Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses
dc.citation.articleNumber | 4408 | en_US |
dc.citation.journalTitle | Nature Communications | en_US |
dc.citation.volumeNumber | 14 | en_US |
dc.contributor.author | Qiao, Liang | en_US |
dc.contributor.author | Pollard, Nia | en_US |
dc.contributor.author | Senanayake, Ravithree D. | en_US |
dc.contributor.author | Yang, Zhi | en_US |
dc.contributor.author | Kim, Minjung | en_US |
dc.contributor.author | Ali, Arzeena S. | en_US |
dc.contributor.author | Hoang, Minh Tam | en_US |
dc.contributor.author | Yao, Nan | en_US |
dc.contributor.author | Han, Yimo | en_US |
dc.contributor.author | Hernandez, Rigoberto | en_US |
dc.contributor.author | Clayborne, Andre Z. | en_US |
dc.contributor.author | Jones, Matthew R. | en_US |
dc.date.accessioned | 2023-08-01T17:29:50Z | en_US |
dc.date.available | 2023-08-01T17:29:50Z | en_US |
dc.date.issued | 2023 | en_US |
dc.description.abstract | Seed-mediated synthesis strategies, in which small gold nanoparticle precursors are added to a growth solution to initiate heterogeneous nucleation, are among the most prevalent, simple, and productive methodologies for generating well-defined colloidal anisotropic nanostructures. However, the size, structure, and chemical properties of the seeds remain poorly understood, which partially explains the lack of mechanistic understanding of many particle growth reactions. Here, we identify the majority component in the seed solution as an atomically precise gold nanocluster, consisting of a 32-atom Au core with 8 halide ligands and 12 neutral ligands constituting a bound ion pair between a halide and the cationic surfactant: Au32X8[AQA+•X-]12 (X = Cl, Br; AQA = alkyl quaternary ammonium). Ligand exchange is dynamic and versatile, occurring on the order of minutes and allowing for the formation of 48 distinct Au32 clusters with AQAX (alkyl quaternary ammonium halide) ligands. Anisotropic nanoparticle syntheses seeded with solutions enriched in Au32X8[AQA+•X-]12 show narrower size distributions and fewer impurity particle shapes, indicating the importance of this cluster as a precursor to the growth of well-defined nanostructures. | en_US |
dc.identifier.citation | Qiao, Liang, Pollard, Nia, Senanayake, Ravithree D., et al.. "Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses." <i>Nature Communications,</i> 14, (2023) Springer Nature: https://doi.org/10.1038/s41467-023-40016-3. | en_US |
dc.identifier.digital | s41467-023-40016-3 | en_US |
dc.identifier.doi | https://doi.org/10.1038/s41467-023-40016-3 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/115046 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer Nature | en_US |
dc.rights | Except where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder. | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.title | Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | publisher version | en_US |
Files
Original bundle
1 - 1 of 1