A model of the aortic baroreceptor in rat

Date
1997
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

The baroreceptor, a stretch-sensitive neuron, senses static and dynamic arterial blood pressure and responds by producing a frequency-modulated train of action potentials. The size and anatomy of baroreceptor nerve endings precludes direct experimental study of the details of baroreceptor behavior; however, studies of output firing frequency in response to arterial pressure changes reveal a highly nonlinear input-output characteristic. While many models of the baroreceptor have been developed, most of these models have failed to provide a comprehensive view of the mechanisms under-lying baroreceptor function. We present a new baroreceptor model which provides a physiologically-based, comprehensive description of all aspects of the system. This model combines a mechanical model of the arterial wall with Hodgkin-Huxley-type models of the transducer and encoder sections of the neuron. The complete model not only mimics a wide range of experimental results, it also provides a means of making predictions about baroreceptor behavior and of examining the mechanisms underlying baroreceptor function.

Description
Degree
Master of Science
Type
Thesis
Keywords
Physiology, Biomedical engineering, Electronics, Electrical engineering
Citation

Alfrey, Karen D.. "A model of the aortic baroreceptor in rat." (1997) Master’s Thesis, Rice University. https://hdl.handle.net/1911/17059.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page