Mechanisms and topology determination of complex chemical and biological network systems from first-passage theoretical approach

dc.citation.articleNumber144106
dc.citation.issueNumber14
dc.citation.journalTitleThe Journal of Chemical Physics
dc.citation.volumeNumber139
dc.contributor.authorLi, Xin
dc.contributor.authorKolomeisky, Anatoly B.
dc.contributor.orgCenter for Theoretical Biological Physics
dc.date.accessioned2017-05-04T18:16:35Z
dc.date.available2017-05-04T18:16:35Z
dc.date.issued2013
dc.description.abstractThe majority of chemical and biological processes can be viewed as complex networks of states connected by dynamic transitions. It is fundamentally important to determine the structure of these networks in order to fully understand the mechanisms of underlying processes. A new theoretical method of obtaining topologies and dynamic properties of complex networks, which utilizes a first-passage analysis, is developed. Our approach is based on a hypothesis that full temporal distributions of events between two arbitrary states contain full information on number of intermediate states, pathways, and transitions that lie between initial and final states. Several types of network systems are analyzed analytically and numerically. It is found that the approach is successful in determining structural and dynamic properties, providing a direct way of getting topology and mechanisms of general chemical network systems. The application of the method is illustrated on two examples of experimental studies of motor protein systems.
dc.identifier.citationLi, Xin and Kolomeisky, Anatoly B.. "Mechanisms and topology determination of complex chemical and biological network systems from first-passage theoretical approach." <i>The Journal of Chemical Physics,</i> 139, no. 14 (2013) American Institute of Physics: https://doi.org/10.1063/1.4824392.
dc.identifier.doihttps://doi.org/10.1063/1.4824392
dc.identifier.urihttps://hdl.handle.net/1911/94175
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
dc.titleMechanisms and topology determination of complex chemical and biological network systems from first-passage theoretical approach
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
first-passage.pdf
Size:
2.71 MB
Format:
Adobe Portable Document Format