Regularized partial least squares with an application to NMR spectroscopy

Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
John Wiley & Sons, Inc.
Abstract

High-dimensional data common in genomics, proteomics, and chemometrics often contains complicated correlation structures. Recently, partial least squares (PLS) and Sparse PLS methods have gained attention in these areas as dimension reduction techniques in the context of supervised data analysis. We introduce a framework for Regularized PLS by solving a relaxation of the SIMPLS optimization problem with penalties on the PLS loadings vectors. Our approach enjoys many advantages including flexibility, general penalties, easy interpretation of results, and fast computation in high-dimensional settings. We also outline extensions of our methods leading to novel methods for non-negative PLS and generalized PLS, an adoption of PLS for structured data. We demonstrate the utility of our methods through simulations and a case study on proton Nuclear Magnetic Resonance (NMR) spectroscopy data.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Allen, Genevera I., Peterson, Christine, Vannucci, Marina, et al.. "Regularized partial least squares with an application to NMR spectroscopy." Statistical Analysis and Data Mining, 6, no. 4 (2013) John Wiley & Sons, Inc.: 302-314. http://dx.doi.org/10.1002/sam.11169.

Has part(s)
Forms part of
Rights
This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyighted by Wiley.
Link to license
Citable link to this page