Fracture toughness of the sidewall fluorinated carbon nanotube-epoxy interface

Abstract

The effects ofᅠcarbon nanotubeᅠ(CNT)ᅠsidewall fluorination on theᅠinterfaceᅠtoughness of theᅠCNTᅠepoxyᅠinterfaceᅠhave been comprehensively investigated. Nanoscale quantitative single-CNT pull-out experiments have been conducted on individual fluorinatedᅠCNTsᅠembedded in an epoxy matrix,ᅠin situ, within aᅠscanning electron microscopeᅠ(SEM)ᅠusing an InSEMᆴᅠnanoindenter assisted micro-device. Equations that were derived using a continuum fracture mechanics model have been applied to compute theᅠinterfacialᅠfracture energy values for the system. Theᅠinterfacialᅠfracture energy values have also been independently computed by modeling the fluorinated graphene-epoxyᅠinterfaceᅠusingᅠmolecular dynamics simulationsᅠandᅠadhesionᅠmechanisms have been proposed.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Ganesan, Yogeeswaran, Salahshoor, Hossein, Peng, Cheng, et al.. "Fracture toughness of the sidewall fluorinated carbon nanotube-epoxy interface." Journal of Applied Physics, 115, no. 22 (2014) AIP Publishing LLC.: http://dx.doi.org/10.1063/1.4881882.

Has part(s)
Forms part of
Rights
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Link to license
Citable link to this page