Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation

dc.citation.firstpage4584en_US
dc.citation.issueNumber29en_US
dc.citation.journalTitleAdvanced Functional Materialsen_US
dc.citation.lastpage4594en_US
dc.citation.volumeNumber24en_US
dc.contributor.authorGizzatov, Ayraten_US
dc.contributor.authorKey, Jaehongen_US
dc.contributor.authorAryal, Santoshen_US
dc.contributor.authorAnanta, Jeyaramaen_US
dc.contributor.authorCervadoro, Antonioen_US
dc.contributor.authorPalange, Anna Lisaen_US
dc.contributor.authorFasano, Matteoen_US
dc.contributor.authorStigliano, Cinziaen_US
dc.contributor.authorZhong, Mengen_US
dc.contributor.authorDi Mascolo, Danieleen_US
dc.contributor.authorGuven, Ademen_US
dc.contributor.authorChiavazzo, Eliodoroen_US
dc.contributor.authorAsinari, Pietroen_US
dc.contributor.authorLiu, Xuewuen_US
dc.contributor.authorFerrari, Mauroen_US
dc.contributor.authorWilson, Lon J.en_US
dc.contributor.authorDecuzzi, Paoloen_US
dc.contributor.orgR.E. Smalley Institute for Nanoscale Science and Technologyen_US
dc.date.accessioned2017-06-01T18:53:01Zen_US
dc.date.available2017-06-01T18:53:01Zen_US
dc.date.issued2014en_US
dc.description.abstractIron oxide nanoparticles are formidable multifunctional systems capable of contrast enhancement in magnetic resonance imaging, guidance under remote fields, heat generation, and biodegradation. Yet, this potential is underutilized in that each function manifests at different nanoparticle sizes. Here, sub-micrometer discoidal magnetic nanoconstructs are realized by confining 5 nm ultra-small super-paramagnetic iron oxide nanoparticles (USPIOs) within two different mesoporous structures, made out of silicon and polymers. These nanoconstructs exhibit transversal relaxivities up to ≈10 times (r 2 ≈ 835 mm −1 s−1) higher than conventional USPIOs and, under external magnetic fields, collectively cooperate to amplify tumor accumulation. The boost in r 2 relaxivity arises from the formation of mesoscopic USPIO clusters within the porous matrix, inducing a local reduction in water molecule mobility as demonstrated via molecular dynamics simulations. The cooperative accumulation under static magnetic field derives from the large amount of iron that can be loaded per nanoconstuct (up to ≈65 fg) and the consequential generation of significant inter-particle magnetic dipole interactions. In tumor bearing mice, the silicon-based nanoconstructs provide MRI contrast enhancement at much smaller doses of iron (≈0.5 mg of Fe kg−1 animal) as compared to current practice.en_US
dc.identifier.citationGizzatov, Ayrat, Key, Jaehong, Aryal, Santosh, et al.. "Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation." <i>Advanced Functional Materials,</i> 24, no. 29 (2014) Wiley: 4584-4594. http://dx.doi.org/10.1002/adfm.201400653.en_US
dc.identifier.doihttp://dx.doi.org/10.1002/adfm.201400653en_US
dc.identifier.urihttps://hdl.handle.net/1911/94753en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Wiley.en_US
dc.subject.keywordMRIen_US
dc.subject.keywordmagnetic nanoparticlesen_US
dc.subject.keywordmagnetic guidanceen_US
dc.subject.keywordrelaxivityen_US
dc.subject.keywordmesoporous matricesen_US
dc.titleHierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulationen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Magnetic-Nanoconstructs.pdf
Size:
3.06 MB
Format:
Adobe Portable Document Format