Rapid fabrication of hydrogel micropatterns by projection stereolithography for studying self-organized developmental patterning

Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
Abstract

Self-organized patterning of mammalian embryonic stem cells on micropatterned surfaces has previously been established as an in vitro platform for early mammalian developmental studies, complimentary to in vivo studies. Traditional micropatterning methods, such as micro-contact printing (μCP), involve relatively complicated fabrication procedures, which restricts widespread adoption by biologists. Here, we demonstrate a rapid method of micropatterning by printing hydrogel micro-features onto a glass-bottomed culture vessel. The micro-features are printed using a projection stereolithography bioprinter yielding hydrogel structures that geometrically restrict the attachment of cells or proteins. Compared to traditional and physical photomasks, a digitally tunable virtual photomask is used in the projector to generate blue light patterns that enable rapid iteration with minimal cost and effort. We show that a protocol that makes use of this method together with LN521 coating, an extracellular matrix coating, creates a surface suitable for human embryonic stem cell (hESC) attachment and growth with minimal non-specific adhesion. We further demonstrate that self-patterning of hESCs following previously published gastrulation and ectodermal induction protocols achieves results comparable with those obtained with commercially available plates.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Zhu, Ye, Sazer, Daniel, Miller, Jordan S., et al.. "Rapid fabrication of hydrogel micropatterns by projection stereolithography for studying self-organized developmental patterning." PLOS ONE, 16, no. 6 (2021) Public Library of Science: https://doi.org/10.1371/journal.pone.0245634.

Has part(s)
Forms part of
Rights
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citable link to this page