Lifetime Optimization Using Energy Allocation in Wireless Ad-hoc Networks

Date
2008-02-12
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

We develop energy-balancing strategies for wireless ad-hoc networks energy resource allocation and deployment. The objective is to extend the network lifetime. We find the amount of energy storage that each node requires for having a balanced energy consumption throughout the network. For a limited set of energy resources in the deployment area, we determine an efficient deployment scenario in which messages are routed across the network while using the fastest delivery path. Two ad-hoc architectures are considered: first, where the network is peerto-peer and all the nodes have the same characteristics; and second, a base-station centric network where a base-station in the center collects the data from the ad-hoc nodes. We study synchronous and asynchronous communication paradigms for both architectures. To address the problems, we first determine the deployment scheme that results in the most comprehensive radio coverage. Next, we calculate the energy distribution for each network scenario. Then, the derived distributions are extended to randomly deployed networks. We present a thorough analysis and comparison for peer-to-peer and base-station architectures, for both synchronous and asynchronous paradigms. Our experimental evaluations show that the energy-balancing distributions extend the network’s lifetime by more than 40% when compared to nonbalanced networks with no overhead on message routing delay.

Description
Advisor
Degree
Type
Technical report
Keywords
Citation

Koushanfar, Farinaz and Shamsi, Davood. "Lifetime Optimization Using Energy Allocation in Wireless Ad-hoc Networks." (2008) https://hdl.handle.net/1911/96372.

Has part(s)
Forms part of
Published Version
Rights
You are granted permission for the noncommercial reproduction, distribution, display, and performance of this technical report in any format, but this permission is only for a period of forty-five (45) days from the most recent time that you verified that this technical report is still available from the Computer Science Department of Rice University under terms that include this permission. All other rights are reserved by the author(s).
Link to license
Citable link to this page