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Abstract—We develop energy-balancing strategies for wireless
ad-hoc networks energy resource allocation and deployment. The
objective is to extend the network lifetime. We find the amount
of energy storage that each node requires for having a balanced
energy consumption throughout the network. For a limited set
of energy resources in the deployment area, we determine an
efficient deployment scenario in which messages are routed across
the network while using the fastest delivery path. Two ad-hoc
architectures are considered: first, where the network is peer-
to-peer and all the nodes have the same characteristics; and
second, a base-station centric network where a base-station in
the center collects the data from the ad-hoc nodes. We study
synchronous and asynchronous communication paradigms for
both architectures.

To address the problems, we first determine the deployment
scheme that results in the most comprehensive radio coverage.
Next, we calculate the energy distribution for each network sce-
nario. Then, the derived distributions are extended to randomly
deployed networks. We present a thorough analysis and com-
parison for peer-to-peer and base-station architectures, for both
synchronous and asynchronous paradigms. Our experimental
evaluations show that the energy-balancing distributions extend
the network’s lifetime by more than 40% when compared to non-
balanced networks with no overhead on message routing delay.

I. INTRODUCTION

Energy is the most scarce resource and constraint in wire-
less ad-hoc networks (WANs). WANs are often deployed for
monitoring and surveillance tasks or to transfer data over
a geographic extent. A prime example of their usage is in
sensor networks, where sensor-based ad-hoc nodes collect the
sensed data from various parts of the environment and then
either make autonomous distributed decisions, or collect the
distributed data from ad-hoc nodes at a base-station and later
fuse the data together to make a decision.

Our objective is to maximize the duration of the network’s
lifetime, without the need for manual interactions and battery
replacement. We define lifetime as the time when the first
node in the WAN fully depletes its battery [1]–[3]. Note
that, disconnecting one node might not disconnect the whole
network. However, many experiments reveal that there is a
sharp transition point for the WAN disconnection, as many
nodes in similar conditions in the network would deplete
their energy at once and the non-depleted nodes would be
wasted once the network disconnects [4]. Thus, to maximize
the efficiency of network’s energy consumption, one must
balance the energy usage of the distributed nodes to prevent
the network disconnection. An important observation is that
under the assumption that the nodes in the network have a
uniform probability of being a transmitter or receiver, the
nodes that are deployed in the inner parts of the WAN have a
larger probability of being utilized as forwarding relays. For
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Fig. 1. Base station in the center of area.
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Fig. 2. The triangular grid deployment.

example in Figure 2, node vn is more likely to be used as a
relay node than node vm.

Given a fixed number of nodes’ energy sources (batteries),
we address the problem of assigning the batteries to the
nodes in the deployment field. We find the assignment that
balances the energy depletion of the nodes, while the WAN
covers the largest possible area and the packets traversing
the network are routed on the shortest possible paths with
the minimal delay. We consider the peer-to-peer and base-
station architectures, for both synchronous and asynchronous
communication paradigms. In the peer-to-peer architecture, all
nodes directly communicate with each other. In base-station
architecture, all nodes send their sensed data to a base station
vb in the center of the area. An example is shown in Figure
1. For all cases, we probabilistic analysis for finding the
continuous distributions of the energy resource assignment in
the area.

Our contributions are as follows. First, we find the energy-
balancing distribution of the nodes energy resources by us-
ing analytical methods. Second, the distributions take into



account the effect of the important component of the idle
energy consumption. To the best of our knowledge, this
component has not been considered in any of the previous
work that addressed relevant energy distribution problems
[5]–[7]. Third, we present a detailed comparison between
the energy-balancing distributions of peer-to-peer and base-
station architectures in terms of lifetime, coverage area, and
delay overhead for the equal amount of available energy re-
sources. Fourth, we carefully examine and compare the energy
balancing distributions and their properties in synchronous
versus asynchronous communication paradigms. Fifth, scaling
and asymptotic properties of the derived distributions both in
terms of the number of nodes and the amount of available
energy resource are explored. Sixth, we show that the derived
distributions can be used for randomly deployed networks
by evaluating their energy-balancing properties. Proposed dis-
tributions cause more efficient randomly deployed network.
Lastly, we show how balanced distributions can be applied to
the large networks with multiple base-stations.

The remainder of the article is organized as follows. After
describing the preliminaries in the next section, we survey
the related literature in Section II. Section IV presents the
problem statements. The analytical solution to the problems
are presented in Section V. We extend the derived energy
distributions to the random networks and the networks with
multiple base stations in Subsection V-E2. The evaluations
and comparisons of various scenarios are discussed in Section
VI. We conclude in Section VII.

II. RELATED WORK

System level power management of wireless ad-hoc net-
works has recently attracted a lot of attention [8]–[15].
Generally, lifetime maximization methods can be divided in
two main categories: pre-deployment lifetime maximization
methods [10], [16]–[19] and post-deployment lifetime maxi-
mization methods [20] [21] [22] [23]. In the former, node’s
positions (or distribution or energy level) are determined to
maximize networks’ lifetime. The later methods try to maxi-
mize the networks’ lifetime when nodes are already deployed
and there is no control on node positions. The work that is
presented in this paper focuses on the pre-deployment lifetime
maximization.

A number of research groups have derived upper bounds
for the lifetime of a multi-hop WANs or wireless sensor
networks [5], [7]. These upper bound are derived for networks
that collect information form a specific area and send it to
a base-station. Also, heuristic methods for placement of the
nodes for minimizing the energy consumption were proposed
[24], [25]. Subramanian and Fekri [26] propose a non-uniform
distribution of nodes in the area for a data gathering scenario
with a base-station, where all the nodes are actively sending
data in each time interval.

In sensor networks, several schemes for distribution of
sensor energies over a sensing field where the quality of the
reconstructed sensed phenomena additionally constraints the
placement of sensors have been addressed [10], [16]–[18]. For
example, Iranli et al. have developed deployment strategies for

a two-tier wireless sensor networks for monitoring the sensed
phenomena [10]. The two-tier is composed of nodes (sensors)
and microservers (data gathering and forwarding units). The
authors have solved the problem of assigning energy to compo-
nents such that the network lifetime is maximized subject to a
total energy budget. In another work, Maleki and Pedram [18]
found the sensor node density, at every point inside a given
deployment region which results in allocating the minimum
total number of sensors.

Another pre-deployment lifetime maximization method is
introduced by Krause et al. [19], where nodes collect data
and send it to a base-station. Node placement over the in-
formation field is their main concern. They have introduced
a placement algorithm to maximize information gathered by
network while minimizing the network energy consumption.
They have modeled the information field and inter-node link
qualities by Gaussian processes. Then, based on the models,
communication cost and sensing quality are predicted. Finally,
using the predictions, they propose a heuristic algorithm for
node placement. It is assumed that all nodes can communicate
directly, i.e., no multi-hop communication is assumed. More-
over, they do not consider idle the energy consumption and
assume that the network is fully synchronized.

The work presented herein adds to the knowledge of the
existing literature in a number of ways. First, our work
considers the idle energy consumption in the distribution
derivations. Second, it also addresses the problem for both
synchronous and asynchronous cases. There are a number of
heuristic placement methods [24], [25] that consider the idle
energy but do not derive any analytical distributions or bounds.
None of the analytical schemes consider the effects of the
idle energy or asynchrony in deriving the distribution func-
tion or the upper bounds [5]–[7], [10], [16]–[19], [24]–[26].
Third, the comparisons between the peer-to-peer and base-
station networks for synchronous and asynchronous cases were
not performed before. Lastly, we show how the analytically
derived distributions can be applied to randomly deployed
networks and large networks with multiple base stations.
Note that we do not address sensing: the distribution of the
sensed phenomena that has a great impact on the analytical
distribution derivations varies across environments. Unless a
specific phenomenon and a model (or a learning method)
is assumed, it is hard to generalize the sensed phenomena.
We express that deriving the balanced nodes distributions for
communicating messages would pave the way for the analysis
of sensor data, assuming known or learnable models of the
physical entity [19], [27].

III. PRELIMINARIES

In this section, we describe preliminaries, including the
definitions and our assumptions.
• Energy consumption model. Several studies of node’s energy
consumption have revealed that the radios are the most sig-
nificant sink of the node’s limited battery energy. Radios do
not just consume energy while sending and receiving packets,
but also they consume a non-negligible amount of energy
when they are listening (idle) [28]. Table I shows the energy
consumption for different technologies.



• Energy balancing. Assignment of energy resources to nodes
such that the nodes deplete their energies in the same time
is called energy balancing. In our analysis and simulations,
we divide operation time of the network into intervals of time
with the same length, denoted by time step.
• Nodes wake up for a short interval at each time step.

TABLE I
ENERGY CONSUMPTION IN DIFFERENT TECHNOLOGIES

Technology Receive Transmit idle
(mW) (mW) (mW)

MICA2 Mote [29] 30 81 30
LUCENT IEEE 802.11 960 1330 843
Wavelan PC card (2 Mbps) [28]
Orinoco Gold 802.11b 3500 3700 2380
PCMCIA [30]

• Lifetime. Number of time steps during which all the nodes
are alive.
• Nodes’ radio coverage. The unit disk radio model is as-
sumed: two nodes that are closer than a given radio range r can
directly communicate. The further nodes use the nodes within
their radio range to relay (forward) the messages in a multi-
hop way. A node’s radio has many power levels that translate
to different received signal powers or achievable radio ranges
(i.e., the longest distance in which the packets are received
with a very high probability). To optimize the coverage, we
consider the ratio of the achievable radio range (R) to the
transmission power consumption (Pt) of the nodes R

Pt
that

has a maximal point for the radio in a certain homogeneous
environment. In the most reported range studies the maximum
is achieved by setting the radio at its highest level. We use
the maximum R

Pt
as the operational point of the transmission

for all nodes that provides the largest and the most energy-
efficient coverage area. Note that it is proved deployment in
Figure 2 provides the maximum coverage area [31].
• Synchronization. Two nodes are synchronized if and only
if their clocks present exactly the same time. We study both
synchronous and asynchronous communication paradigms. In
synchronous, at each time step, there is a small interval of time
where the nodes all wake up together and poll their neighbors
to check for new messages. The nodes save their energy
by sleeping the remainder of the time step. In asynchronous
network, nodes sleep in durations to save power as well. But
the nodes that are sending or forwarding have to wait for the
asleep neighbor to wake up before relaying for them. Thus,
the waiting nodes waste energy while they are idle [32].
• Deployment. To maximize the coverage, nodes are deployed
in a triangular grid deployment that provably provides the
maximal coverage for the unit disk model [31] when not
considering energy balancing. The distance between the nodes
is determined by the maximum R

Pt
of the environment. A small

triangular deployment grid is illustrated in Figure 2. Nodes are
regularly placed in the vertices of triangles. Length of edges
in triangles are equal to communication range of nodes. We
consider a symmetric deployment area and perform our anal-
ysis on this network. However, as we show in our evaluations,
the distributions resulting from our analysis provide a bound
for the achievable coverage and provide energy balancing even

for the random deployment scenarios.
• Network Architecture. We study (i) a peer-to-peer architec-
ture, where all the nodes equivalent capacities; and (ii) a base-
station centric architecture, where all messages are sent to and
received from the base-station. The base-station is located in
the center of the monitoring area (Figure 1).
• Routing. The routing strategy is assumed to be the shortest
path. Note that one could potentially design a routing strategy
for balancing the energy consumption of the nodes. However,
assuming a lossless channel, a longer route means a larger
delay and more energy consumption that is not desirable.
The proposed energy balancing method guarantees the shortest
path routing time while optimizing for a balanced energy
distribution.

IV. PROBLEM FORMULATION AND ASSUMPTIONS

In this subsection, we present the formal definition of our
problem and the four considered scenarios. If the goal is to
simultaneously address the coverage and energy efficiency,
the problem is NP-complete and computationally intractable
[33]. We decided to fix the deployment to a symmetric
grid coverage shape and study the distributions. Note that in
Subsection V-E2, we explain how the derived distributions (for
the symmetric regular deployment) can be extended to the
randomly deployed networks.
PROBLEM: Balancing of Energy in Deployment of WANs
(BalancED).
Instance: An ad-hoc network with N nodes, {v1,. . . ,vN},
each with a maximum radio range r, in a symmetric deploy-
ment field F (the topology was described in Section III), where
all the nodes have identical probabilities of being the initial
sender or the final receiver of a packet.
Question: Find the distribution of the nodes’ energies such
that all the nodes deplete their energy the same time and the
network arrangement does not increase the path delays, i.e.,
shortest path routes are always used.

Assumptions and comments:
(1) We assume the shortest path routing. When there are more
than one shortest path between the sender and the receiver,
we use the following policy to route the packets. When node
vn wants to send a packet to node vm, it asks its neighbors
for the shortest path to the vm. If there is just one neighbor
with the shortest path to vm then vn sends the packet to the
neighbor with the shortest path. If there are more than one
neighbor with the shortest path to vm, node vn selects one
of them randomly (equiprobably) and sends the pack to the
selected neighbor. This procedure is continued until the packet
reaches its destination. In this routing policy, each node should
just store the local information about the shortest path.
(2) We divide the the network lifetime to a number of time
steps. In each time step, one node vs sends a packet to another
node vr. If there are q hops between vs and vr then the packet
would be forwarded q times in one time step. Since in each
time step, just one packet is delivered, there is no contention
in the network.
(3) Energy balancing increase the lifetime of the network.
Assume the network is not balanced and the total amount of



energy is constant. When energy of the first node is depleted,
we say the network is dead. Since the network is not balanced,
other nodes still have energy but we consider the network as
a dead network. Let assume node vn is the first node that dies
and vm still has energy. If one increase the energy level of node
vn by decreasing energy level of ode vm (energy balancing),
node vm would die later. Thus, lifetime of the network is
increased.
(4) Although we solve energy balancing problem for symmet-
ric deployment, in Section V-E2, we extend the results to the
randomly deployed networks and we do not assume nodes
with different amount of energy.

The four considered scenarios are as follows.
(i) BalancED-P2P-s. We address the BalancED-P2P-s prob-
lem assuming that all nodes are equivalent, inter-node com-
munication is peer-to-peer, and the nodes are all synchronized.
i.e., a randomly selected node sends a packet to another
randomly selected node at a synchronized time step.
(ii) BalancED-P2P-a. We address the BalancED-P2P-a prob-
lem assuming that all nodes are equivalence, communication
is peer-to-peer and nodes are not synchronized.
(iii) BalancED-Base-s. We address the BalancED-Base-s
problem assuming a base station with no power constraint
in the middle and nodes are all synchronized.
(iv) BalancED-Base-a. We address the BalancED-Base-a
problem assuming a base station with no power constraint
in the middle and nodes are not synchronized .

V. ENERGY-BALANCING

The objective of this section is to find the distributions of
the consumed energy for different scenarios. To balance the
energy usage, we assign the node batteries according to the
analytically derived energy consumption. Equivalently, nodes
with equal energy can be distributed according to the derived
distributions.

A. BalancED-P2P-s

We assume that in a fully synchronized network, nodes
periodically and simultaneously wake up for a short time
interval to check for packets. There is a fixed energy cost
(Emoni) for the periodic monitoring. There are three possible
states for a communicating node: (1) the node is the initial
sender, (2) it is the final receiver, or (3) it is the relay node
(forward). For a node vn, the probabilities of the three states
are denoted by (1) ps(vn), (2) pr(vn), and (3) pf (vn). The
required energy for the states are denoted by (1) Es (sending
energy), (2) Er (receiving energy), and (3) Ef (receiving
and forwarding energy) respectively. The total communication
energy consumption of vn at one time step is denoted by
Estep(vn) that is

Estep(vn) = ps(vn)Es + pr(vn)Er + pf (vn)Ef (1)

Since Emoni is a fixed overhead for all nodes we omit it in
derivations.

We now compute the probability terms in Equation 1.
Assume that at each time step, a node is randomly selected to
send a message to a randomly selected destination node. The

assumption of one node at a time is only to clarify the analysis.
Extension to multiple nodes could be easily accomplished by
scaling in time.

Since all nodes can be equiprobably senders or receivers,
for a network of N nodes, ps(vn)=pr(vn)= 1

N . For determining
the forwarding probability, we utilize the network topology
illustrated on Figure 2, where a randomly selected node vn is
the center of the star formed by the triangle laterals around it.
As can be seen on the figure, we define two subsets of nodes
as follows

Rn,i = {Nodes in the region Ri} i = 0, . . . , 5
Ln,i = {Nodes on the line Li} i = 0, . . . , 5 (2)

The forwarding probability (pf ) can be found by

pf (vn) =
5∑

i=0

pf (vn | An,i) pf (An,i) + (3)

+
5∑

i=0

pf (vn | Bn,i) pf (Bn,i) (4)

+
5∑

i=0

pf (vn | Cn,i) pf (Cn,i)

+
5∑

i=0

pf (vn | Dn,i) pf (Dn,i)

+
5∑

i=0

pf (vn | Fn,i) pf (Fn,i)

where An,i = {Rn,i → Rn,i+3(mod 6)}; Bn,i ={Ln,i →
Gn,i}; Gn,i = Ln,i+2(mod 6) ∪ Rn,i+2(mod 6) ∪ Rn,i+3(mod 6) ∪
Ln,i+4(mod 6); Cn,i = {Ln,i → Ln,i+3(mod 6)}; Dn,i = {Rn,i →
Ln,i+3(mod 6)}; and Fn,i = {Rn,i → Ln,i+4(mod 6)}. Note that
A → B means that a node in A sends a packet to a node in B.
The ”(mod 6)” terms appear because of the hexagonal shape
of area, i.e., since indices are ordered, i + k(mod 6) means k
indices away from i.
Deriving elements of Equation 3

To find pf (vn), one needs to calculate all the elements in
Equation 3. We begin with finding the probability pf (A → B)
when A and B are two disjoint sets. Let va ∈ A and
vb ∈ B; thus, pf (va → vb) = 1

N(N−1) . Also, if va 6= vc

then {va → vb} and {vc → vd} are disjoint. Therefore,

pf (A → B) =
∑

va∈A,vb∈B

pf (va → vb) (5)

=
∑

va∈A,vb∈B

1
N(N − 1)

=
| A || B |
N(N − 1)

Using Equation 5, all of the non-conditional terms in the
Equation 3 can be found.

Before explaining how pf (vn) is derived, recall that it is
assumed that routing is the shortest path (Section III): each
node forwards the packet to one of its neighbors that has
the least number of hops to the destination. In case there
are multiple such neighbors, one of them will be randomly
selected. As Figure 3 shows, there might be more than one
shortest path between two nodes.



Fig. 3. There might be more than one shortest path between two nodes.

To find the conditional terms of pf (vn), we start with those
terms that contain Rn,i as the transmitter, i.e., An,i,Dn,i,Fn,i.
Suppose that a node vm in Rn,i is sending a packet to the node
vn, as shown in Figure 2. Let Svm→vn,i denote the number
of hops traversed along the lines parallel to Ln,i in Rn,i and
Tvm→vn,i denote the number of hops traversed along the lines
parallel to Ln,i+1(mod 6) in the region Rn,i.

Consider the case of a node vm in Rn,i is sending a packet
to a node in Rn,i+3(mod 6). While the packet is in region Rn,i

or on its border, it randomly selects one of its two options for
the shortest path to the destination. To reach vn, the packet
should do exactly Svm→vn,i movements along line Ln,i in its
first Svm→vn,i + Tvm→vn,i movements. Thus

pf (vn | vm → Rn,i+3(mod 6)) =

(
Svm→vn,i + Tvm→vn,i

Svm→vn,i

)

2Svm→vn,i+Tvm→vn,i
.

(6)
Assuming that the sender is in Rn,i, the probability of the

node vm ∈ Rn,i be the sender is 1
|Rn,i| . Furthermore, if va

and vc are two nodes and va 6= vc, the probability of the both
nodes being senders in the same time is zero. Therefore,

pf (vn | Rn,i → Rn,i+3(mod 6)) = (7)

1
| Rn,i |

∑

m∈Rn,i

(
Svm→vn,i + Tvm→vn,i

Svm→vn,i

)

2Svm→vn,i+Tvm→vn,i
.

In case that a node vm in Rn,i sends a packet to the a node
on the line Ln,i+3(mod 6), if the packet reaches the line L′n,i =
Ln,i∪{vn}∪Ln,i+3(mod 6), it cannot deviate from that line until
it reaches the destination. If the packet reaches the line L′n,i

exactly after k steps, in the (k−1)-th step, it would be adjacent
to the line L′n,i. Furthermore, at the (k−1)-th step, the packet
randomly selects between two possible options; moving to line
L′n,i or moving parallel to it. Therefore, the packet reaches

the line L′n,i exactly after k steps with a probability,

1
2

(
k − 1

Tvm→vn,i − 1

)

2k−1
. (8)

As can be seen on Figure 2, the packet sent by node vm

passes through the node vn on its route if it touches line L′n,i

in Tvm→vn,i, Tvm→vn,i + 1 , . . . , or Tvm→vn,i + Svm→vn,i

steps. Therefore,

pf (vn | m → Ln,i+3(mod 6)) =

1
2

Tvm→vn,i+Tvm→vn,i∑

k=Svm→vn,i

(
k − 1

Svm→vn,i − 1

)

2k−1
. (9)

Such as the previous case, the probability that node vm be
the transmitter provided that it is a member of Rn,i, is 1

|Rn,i| .
Thus

pf (vn | Rn,i → Ln,i+3(mod 6)) = (10)

1
2 | Rn,i |

∑

vm∈Rn,i

Tvm→vn,i+Svm→vn,i∑

k=Tvm→vn,i

(
k − 1

Tvm→vn,i − 1

)

2k−1
.

Similarly, we find that

pf (vn | Rn,i → Ln,i+4(mod 6)) = (11)

1
2 | Rn,i |

∑

m∈Rn,i

Svm→vn,i+Tvm→vn,i∑

k=Svm→vn,i

(
k − 1

Svm→vn,i − 1

)

2k−1
.

Now, we have found the conditional terms in Equation
3, where the transmitter is in Rn,i. It remains to find the
terms that are corresponding to the transmitters being in Ln,i.
Consider the case where node vm in Ln,i sends a packet to a
node in Gn,i. It requires Tvm→vn,i movements along L′n,i to
reach vn; in each movement, it is possible to deviate from the
line L′n,i with a probability 1

2 . Therefore, the packet visits vn

with a probability
(

1
2

)Tvm→vn,i . Knowing that the transmitter
is in Gn,i, the probability of selecting a particular vm ∈ Gn,i

as the transmitter is 1
|Gn,i| . Thus

pf (vn | Ln,i → Gn,i) =
1

| Gn,i |
∑

vm∈Gn,i

(
1
2

)Tvm→vn,i

(12)
Finally, we find the probability that a node vn participates in

forwarding when a sender node in Ln,i transmits a packet to a
receiver node in Ln,i+3(mod 6). In this case, since there is only
one shortest path and it includes node vn, the packet that is sent
from a node on Ln,i to a node on Ln,i+3(mod 6) passes through
node vn with probability 1, pf (vn | Ln,i → Ln,i+3(mod 6)) =
1.

In Figure 2, we see that the number of nodes in various
subsets Rn,i and Ln,i are different. Depending on the position
of the vn within the network and its associated subregions,
pf (vn), n = 1 . . . N are different. Substituting the derived
terms in Equation 1 determines the expected energy consump-
tion for each node.
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Fig. 4. Energy distribution for asynchronous network. The x and y axes
show the deployment coordinates

Figure 4 plots the energy distribution for 61 nodes in a
hexagonal area. The x and y axes show the deployment
coordinates. The expected energy for each node at one time
step is computed by Equation 1, ignoring the fixed monitoring
overhead, for Emoni = 0, Es = 1mJ, Er = 1mJ, and
Ef = 2mJ.

B. BalancED-P2P-a

In an asynchronous network, nodes are assumed to have
periodic cycles of sleeping and waking up for monitoring,
similar to the synchronous scenario. However, because of the
lack of synchrony among the node’s schedules, an awake node
(vn) that receives a packet, cannot immediately forward it to
its next neighbor on the shortest path (vm), until the node’s
next wake-up. Thus, vn will consume idle energy.

1) Formulating Energy Distribution as an Optimization
Problem: In an asynchronous network, nodes require energy
for four tasks: sending a packet, receiving a packet, forwarding
a packet, or waiting for the next node in the shortest path
to wake up to relay their message. We have already found
the required energy for sending, receiving, and forwarding in
BalancED-P2P-s. To calculate the idle energy consumption,
the sleep duration model for a node vm is assumed to be
a random variable with the expected value αm. Note that
a periodic sleep schedule would be a special case of this
model, where the expected value is exactly the sleep duration.
Furthermore, the expected value of the sleep duration of each
node αm is assumed to be inversely proportional to the node’s
initial available energy, i.e., the nodes with larger energy
resources wake up more frequently. Thus, they forward more
packets. More formally, αm = λ0

Et(vm) , where Et(vm) is the
total energy of node vm and λ0 is a constant factor that indicate
wake up frequency. If we set up the network such that is can
works for J time steps then Et(vm) = JEstep(vm). Thus,
αm = λ

Estep(vm) ; where λ = λ0
J

To find the expected value of the idle energy consumption,
assume that node vn is waiting for its neighbor vm to wake

vn

Ln,1

Ln,0

Ln,5Lm,4

Lm,3

Lm,2

Rn,0Rm,2

Rm,3 Rn,5vm

Fig. 5. Node vn sends a packet to its neighbor vm. The division of the lines
and the regions is also depicted.

up and get the packet. The expected wake up time for vm

is αm seconds (see Appendix D), during which the node
vn consumes idle energy Enidle

= αmpw. pw is the node’s
power consumption while it is idle (Enidle

is the corresponding
energy). Thus, we can find the total node’s energy in each time
step.

Estep(vn) = ps(vn)Es + pr(vn)Er + pf (vn)Ef

+
∑

vm∈N (vn)

pvn→vm

λpw

Estep(vm)
(13)

where pvn→vm is the probability that the node vn sends a
packet to its neighbor node vm and N (vn) denotes the nodes
that are neighbors of vn.

The only parameters that we still have not computed in
Equation 13 are pvn→vm terms that are derived in Appendix
A.

Even though Equation 13 computes the energy that is
needed for each node, solving it to the find energy distribution
for all nodes in the network might not be not energy efficient.
It is so because Equation set 13 does not consider topological
aspect of the problem. To clarify, assume node vm is located
on the border of the area. Node vm is unlike to participate in
forwarding and needs less energy than other nodes. Thus, the
expected value of its sleep time is large. When vm is supposed
to receive a packet, its neighbor that has the packet, should
wait for a long time till node vm wakes up; hence, it would
waste energy. To mitigate this problem, we let nodes have
more energy than they need to do their tasks ( Equation 13 ).
Then, the total energy in the network will be minimized. We
change equalities in Equations 13 to inequalities and call them
principal energy inequalities for wireless network. Therefore,
we need to find the solution to the following optimization
problem.

min
∑N

n=1 Estep(vn)
Estep(vn) ≥ ps (vn)Es + pr (vn)Er

+pf (vn) Ef +
∑

vni
∈Nn

pvn→vni

λ′
Estep(vni

) n = 1...N

(14)
where λ′ = pwλ.

Note that, in Equation 13, we assumed the wake up energy
for nodes is zero. One can include wake up energy of the
nodes by modifying Equation 13. Based on the wake up policy



discussed in Appendix D, average sleep duration determines
wake up frequency. Shorter sleep duration results in higher
wake up frequency. i.e, wake up frequency of node vn ∝ α−1

n ;
thus, wake up frequency of node vn ∝ Estep(n). Hence, wake
up energy adds a linear term in Equation 13.

2) Convex approximation for the optimal solution of energy
distribution: Optimization (14) is generally a hard problem.
Therefore, we try to approximate it by a convex formulation.

In the first step, consider the following change of variable:

Un =
1

Estep(vn)
. (15)

Thereupon, optimization problem 14 can be restated as

min
∑N

n=1
1

Un

(ps (vn)Es + pr (vn)Er + pf (vn)Ef )Un

+
∑

vni
∈Nn

pvn→vni
λ′Uni

Un ≤ 1 n = 1...N.
(16)

To formulate Equation (16) in a more compact way, assume
Hn is an N ×N matrix where

(Hn)i,j =
{

pvn→vj λ
′ i = n, vj ∈ Nn;

0 otherwise. (17)

(Hn)i,j denotes the i, j-th element of A. Also, define U and
bn be N × 1 matrices where (U)n,1 = Un, n = 1 . . . N , and

(bn)i,1 =
{

ps (vn)Es + pr (vn)Er + pf (vn)Ef i = n;
0 i 6= n.

(18)
Hence, we can rewrite Equation 16 as

min
∑N

n=1
1

Un

bT
nU + UT HnU ≤ 1 n = 1...N.

(19)

To simplify Equation 19, let

U =
[

1
U

]
,Hn =

[
0 1

2b
T
n

1
2bn Hn

]
. (20)

Thus, we restate Equation 19 as

min
∑N

n=1
1

UnUTHnU ≤ 1 n = 1...N.
(21)

Now, let Z = UUT . Also,

trace (HnZ) = trace
(HnUUT

)
= trace

(UTHnU
)

= UTHnU
(22)

Therefore, Equation 21 is equivalent to

min
∑N

n=1
1

Un

trace (HnZ) ≤ 1 n = 1...N
rank (Z) = 1

Z º 0,

(23)

where Z º 0 means that Z is semi-positive definite.
Until this point, we have had neither relaxation nor approxi-

mation. In other words, we have only restated Equation 16 in a
simpler form. To convert it to a convex programming, we apply
one approximation and one relaxation. First, we do approxi-
mation by changing the objective function from

∑N
n=1

1
Un

to
−trace (Z) = −1 +

∑N
n=1−U2

n, i.e., instead of minimizing
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Fig. 6. Energy distribution for asynchronous network. The x and y axes
illustrate the deployment coordinates.

∑N
n=1

1
Un

, we minimize −trace (Z) = −1 +
∑N

n=1−U2
n.

Moreover, we relax the optimization problem Equation 23 by
removing rank-one constrain which is an NP-hard constrain
[34]. By these changes, Equation 23 is lifted to the following
semi-definite programming (SDP).

min − trace (Z)
trace (HnZ) ≤ 1 n = 1...N

Z º 0
(24)

This formulation allows us to solve optimization problem
with usual SDP solvers, i.e., SeDuMi [35]. Appendix B
explains how to find energy distribution from the solution of
optimization problem stated in Equation 24.

We have solved the above optimization problem for a
network with 61 nodes, Es = 1mJ , Er = 1mJ , Ef = 2mJ ,
λ′ = 0.3µJ2, and β = 0.5 (see Appendix B for β). Figure 6
shows the energy distribution for this asynchronous network.

C. BalancED-Base-s

Consider the scenario where there is a base-station vb in
the center of the hexagon; like the network shown in Figure
1. The node vb is either the initial sender or the final reciever
of the packets routed in the network. Rb,i and Lb,i denote
the divisions of the space around vb into lines and regions as
described in Section V-A. The probability of being the initial
sender or the final receiver for an arbitrary node vn is again
1
N . The forwarding energy is not the same as Balanced-P2P
and is derived in Appendix C.

D. BalancED-Base-a

In the BalancED-Base-a case, all the formulation for the
BalancED-P2P network remain valid except for the pvn→vm

terms in Equation 13. Recall pvn→vm is the probability that
node vn sends a packet to the node vm where vn and vm are
two neighbor nodes. Therefore, we need to only find pvn→vm

for the new scenario.



Base station 1

Base station 2
Base station 3

Base station 4

Base station 5

Fig. 7. Large sensor network with multiple base stations

Recall that all packets are routed on the shortest path to the
base. Therefore, packets always go towards the center. Using
the same notations that is used in Section BalancED-P2P-a, if
vn is on Lb,i, then pvn→vm

will be zero for all vm ∈ N (vn)
except for vm ∈ N (vn)∩Lb,i that will be pf (vn)+ 1

N . Note
that 1

N is added to cover the case that vn is the first sender.
When vn is in Rb,i, pvn→vm will be zero for all vm ∈ N (vn)
except for vi ∈ N (vn) ∩ (

Ln,i+3(mod 6) ∪ Ln,i+3(mod 6)
)

that
will be 1

2

(
pf (vn) + 1

N

)
.

Now that we have pvn→vm for this scenario, we can plug
it in Equation 13 to find the optimal energy distribution.

E. Extensions

In this section, we explain how we can extend the derived
node distributions to randomly deployed networks and large
networks with multiple base stations.

1) Randomly deployed networks: In the previous section,
we assumed that all nodes are regularly located in an hexag-
onal area and we found energy distributions in the different
scenarios. Here, we extend these distributions to the networks
in which nodes are randomly deployed. All nodes have the
same energy resource.

To increase the lifetime, nodes are distributed according
to the derived energy distributions. For example, assume
BalancED-P2P-a scenario. Nodes with the communication
range r are deployed in an hexagonal area with diagonal d. We
put s = bd

r c and find BalancED-P2P-a energy distribution for
an hexagonal with s nodes in the diameter. Next, the derived
energy distribution is interpolated over the whole hexagonal
area and is normalized to 1. This normalized distribution is
used as the probability distribution function of the nodes in
the area.

2) WANs with multiple base stations: Assume a network
with hundreds of nodes and a number of base stations, as
shown in Figure 7. Each node sends its data to the nearest base
station, i.e., Voronoi diagram of the base stations is constructed
and each sensor sends its data to the base station in its Voronoi
cell.

To have the optimal energy distribution in each Voronoi cell,
one needs to find the optimal node distribution in all Voronoi
cells. Generally, Voronoi cells are not symmetric structures,
and thus the appropriate distribution cannot be easily and
practically derived. Instead, we use the derived distribution

for the regular hexagon as the energy distribution for these
non-regular polygons. Using this method, we can extend the
derived distributions to large networks with multiple base
stations.

VI. EVALUATION RESULTS

We carried out extensive simulations to asses the perfor-
mance of the BalancED distributions. First, for both fixed
and randomly deployed networks, we compare BalancED-
P2P and BalancED-Base networks. Second, synchronous and
asynchronous networks are compared. Next, we study ex-
tending derived distributions to large networks with multiple
base stations. Finally, sleep duration and packet delays are
discussed.

The simulation set-up closely follows our assumptions in
Section III. We define the size of the hexagonal area as the
number of nodes that are on the diagonal of the hexagon.
Thus, the size of the area in Figure 2 would be 7. In all
of our deterministic evaluations, the size of the area, unless
otherwise stated, is 7. In all simulations, we have used the
energy consumption model derived in [28]. The model is based
on LUCENT IEEE 802.11 Wavelan PC card. According to
this model, if the length of each packet is 1Kb, each node
consumes 2.35mJ to transmit and 0.856mJ to receive a packet.
The model also suggests that the idle power consumption of
nodes is 843mW. Thus, if we set λ of our sleeping protocol
to 2.5mJ × second , λ′ in Equation 14 will be 0.53µJ2.

For the asynchronous scenarios, average sleep duration of
each nodes is found by αm = λ

Estep(vm) (see Section V-B.)
Where Estep(vm) is energy consumption of the node for each
time step. Based on Appendix D, node vm’s sleep duration is
an exponential random variable with mean equal to αm.

To measure the network’s lifetime, we run the network time
step by step. In each time step, one node sends a packet to
another node. The packet may be forwarded multiple times
in each time steps. Nodes lose energy for sending a packet,
forwarding a packet, receiving a packet, or staying in the
idle mode. The first node that dies determines the network’s
lifetime.

In our evaluations, fixed deployment indicates the scenarios
where nodes are regularly placed in the hexagonal area. Differ-
ent nodes might have different amount of energies. In random
deployment, all nodes have the same energy. In this case, nodes
are distributed according to the derived distributions.

A. Comparing BalancED-P2P and BalancED-Base networks.

Equations 1 and 37 determine the expected required energy
for each node for BalancED-P2P-s and BalancED-Base-s
networks in hexagonal deployment. The expected energy is
based on the probabilistic analysis for a single step. In real
scenarios, if the total amount of available energy is not very
large, the average usage of one node does not reach the
asymptotic expectation, and thus, the network does not reach
its full life-time efficiency. Asymptotically, for the network to
last up to K steps, the initial energy of a node vn should
be at least KEstep (vn). We have varied the value of K, and
observed the actual simulated lifetime of the network to study
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Fig. 8. Lifetime comparison for synchronous uniform and BalancED
distributions.
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Fig. 9. Lifetime comparison for asynchronous uniform and BalancED
distributions.

for which values of K the network reaches its asymptotic
behavior. As we mentioned before, we consider a network
dead when the first node dies.

Figure 8 shows the results. The horizontal axis is the
expected lifetime (K) and the vertical axis is the achieved
percentage of the expected lifetime. If the network’s lifetime
is Ks, then the vertical axis is 100Ks

K . As it can be seen on the
figure, BalancED networks can achieve 100% of their expected
lifetime in high energy networks (more than 106 time steps).
Also, BalancED-Base-s is more efficient than BalancED-P2P-
s since it can achieve a higher lifetime efficiency with a lower
energy.

In the next evaluation, we examine the efficiency of bal-
anced distributions for asynchronous networks and random
deployment. Figure 9 shows the results. The horizontal axis
is the total energy of a network with 148 nodes. The vertical
axis is network’s lifetime in terms of number of steps. This
figure indicates that balanced distributions perform about 20%
better than uniform distributions for a random deployment.
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Fig. 10. Lifetime comparison for BalancED-Base-s, BalancED-Base-a, and
uniform.

B. Comparing synchronous and asynchronous communica-
tion.

Figure 10 compares BalancED-Base-s, BalancED-Base-a,
and uniform distributions for fixed deployment. The horizontal
axis is the total initial energy of the network and the vertical
axis represents the network’s lifetime. We run the simulation
until the first nodes dies. The figure confirms that in the high-
energy networks, synchronous paradigms are much more en-
ergy efficient compared with the asynchronous ones, because
of the idle energy consumptions. We also observe that the
BalancED-Base-s is three times more energy efficient than the
uniform and the BalancED-Base-a is fifty percent more energy
efficient than the synchronous uniform distribution.

Furthermore, cross section of the BalancED distributions
are plotted in Figure 11. The observed discontinuity in the
center of the Base-a and Base-s networks is because of
the assumption of having the base-station with unconstrained
amount of energy. In asynchronous networks, further nodes
consume more idle energy than the nodes close to the center.
Thus, the energy in asynchronous networks is more spread
than in synchronous networks. Also, the figure confirms that
the energy is more concentrated in the center in BalancED-
Base when compared to the BalancED-P2P.

C. Number of alive nodes in time

We have also used NS-2 to monitor the number of alive
nodes versus time. In this simulation, the wireless model in
NS-2.30 is used. UDP, IEEE 802.11, and AODV [36] are used
for network layer, MAC layer, and routing protocol, respec-
tively. In this scenario, 100 nodes are randomly distributed in
a hexagonal area (random deployment).

Two cases are considered for node distribution: BalancED-
P2P-a and uniform. Diameter of the hexagonal area is 750m
and the radio range of all nodes is 100m. Each node has 100mJ
initial energy and simulation is run for 1500 steps. At the
beginning of each step, two nodes, randomly, based on their
locations, start to communicate, i.e., one node sends a packet
with length 500Kb to the other node. Figure 12 shows the
result of this simulation. In the balanced distribution, most of
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Fig. 12. Lifetime comparison for uniform and proposed distribution

the nodes live longer than the uniform distribution. The total
initial energy in balanced and uniform networks is equal. As
nodes start to die down, nodes in balanced distribution die
faster than uniform distribution, i.e., in balanced distribution,
nodes’ energies deplete almost at the same time.

D. Increasing the diagonal of monitoring area

In the next experiment, we examine the lifetime and the
coverage. Table II shows networks’ lifetime for different cov-
erage areas (diagonal length of the area). The networks have
the same amount of initial energies. Again, the BalancED-
Base-s performs better than the BalancED-P2P-s. For instance,
lifetime of a BalancED-Base-a with the diagonal of 20 is
approximately the same as Balance-P2P-s lifetime with the
diagonal 6. As expected, the networks’ lifetime decreases
linearly with the diagonal of the area.

In the next experiment, for random deployments, the nodes
are distributed based on the BalancED-P2P-a distribution
described in Section V. Table III illustrates the percentage
of lifetime increase for the uniform and BalancED energy
distributions for a random deployment. Networks with the
same coverage area but different number of available energies

TABLE II
LIFETIME FOR DIFFERENT COVERAGE AREAS. THE TOTAL ENERGY OF

THE NETWORK IS 10KJ.

Diagonal of area BalancED-Base-s BalancED-P2P-s
7 1.88× 105 1.22× 105

9 1.34× 105 9.06× 104

11 1.04× 105 7.17× 104

13 8.54× 104 5.93× 104

15 7.22× 104 5.05× 104

17 6.25× 104 4.40× 104

19 5.51× 104 3.90× 104

21 4.93× 104 3.50× 104
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Fig. 13. Cross section of BalancED-Base-s distribution

are simulated. The first column is the number of nodes in the
area. The second and third columns illustrate the percentage of
lifetime increase for both synchronous and asynchronous cases
respectively. By increasing the number of nodes, we gain more
lifetime improvements. For BalancED-P2P-a, improvement
over the uniform distribution increases from 22.07% for 200
nodes to 39.24% for 500 nodes in the network. The same
behavior can be seen in BalancED-P2P-a networks. This is
because as we increase the number of nodes, we get a better
approximation of the continuous energy allocation.

TABLE III
EFFECT OF INCREASING THE NUMBER OF NODES

Number of nodes Life increase (%) Life increase (%)
BalancED-P2P-s BalancED-P2P-a

200 22.07 44.66
300 22.69 46.94
400 26.60 43.44
500 39.24 53.66

Figure 13 shows the cross section of the BalancED-Base-
s distributions by increasing the size of the monitoring area
from 7 to 21. To have a comparable distributions, all plots
are normalized. The figure suggests that, by increasing the
diagonal of the area, energy distribution converges to the thick
curve. The distance between eighth curve and the thick cure
is less than 0.05 (L1 distance of two curves).
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Fig. 14. Improvement (%) over uniform distribution versus number of the
base stations

E. Multiple base stations

We illustrate that the derived energy distributions can extend
to distributed scenarios with multiple base stations. In this
evaluation, 5000 nodes are randomly deployed. Location of
the base stations is also randomly selected. As discussed in
Section V-E2, in each Voronoi cell, BalancED-Base-s and
BalancED-Base-a distributions are used. In networks with
a small number of base stations, we obtain 25% and 35%
improvements over the uniform distribution for asynchronous
and synchronous networks. The improvement values decrease
to 4% and 23% for networks with 9 base stations, respec-
tively. Figure 14 shows the achieved improvement for both
synchronous and asynchronous networks. By increasing the
number of base stations, Voronoi cell become smaller. For
very small Voronoi cells, balanced and uniform distributions
are approximately the same. Thus, by increasing the number of
base stations, less improvement over the uniform distribution
is expected.

F. Lifetime and sleep duration in asynchronous networks

Furthermore, we have studied the effect of sleep duration
on the network’s lifetime. Since αm = λ

Etotalstep(m) , sleep
duration of nodes is proportional to λ (thus with λ′). We
have run simulation for different λ′ and measured network
lifetime for a fixed deployment. Figure 15 shows the lifetime
versus λ′. In this simulation, the total energy of the network
is 10KJ and nodes are randomly deployed. Figure 15 shows
as the sleeping duration increases, the effect of non-uniform
distribution increases, i.e., as λ′ increases from 1 to 4.3,
improvement over uniform distribution increases from 42%
to 75%.

G. Delay comparison

We also compare the packet delays for the balanced distri-
butions versus the uniform distribution. The average delay of
a synchronous network is proportional to the expected number
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Fig. 15. Effect of sleep duration

of traversed hops. In asynchronous networks, the delay is also
a function of the expected idle time. We have done exten-
sive experiments measuring the delay of the asynchronous
networks. Tables IV and V represent the results. In both P2P-a
and Base-a networks of diagonal 7, we run the networks for a
long time and averaged the encountered delays of the routes
with the same number of hops. In both P2P-a and Base-a, the
communications with less than 3 number of hops have less
delays for the uniform distribution. However, the BalancED
distributions have less delays for larger hop distances. For
example, for a 5-hop distance, uniform distribution has a delay
of 37.59 compared to 27.03 for the BalancED for the Base-a
cases. Also uniform has a delay of 239 compared to 232 for
the P2P-a cases. Note that in BalancED-Base networks, nodes
only send packets to the base stations. Thus, the delays for
these scenarios are smaller than the P2P scenarios.

TABLE IV
DELAY COMPARISON

# of hops Uniform Non-uniform
Delay (ms) Percent Delay (ms) Percent

1 73.19 9.77 73.19 9.79
2 107.40 17.90 105.81 18.45
3 150.20 22.29 144.90 23.43
4 194.36 21.55 188.03 22.22
5 239.65 16.65 232.20 16.47
6 283.45 9.13 273.97 7.753
7 318.62 2.466 314.33 1.755
8 346.56 0.2045 338.47 0.1138
9 363.45 0.0029 453.78 0.0004
Avg delay(ms) 176.172 167.833

VII. CONCLUSIONS

We have calculated the energy-balancing distribution of en-
ergies for ad-hoc wireless networks for the purpose of increas-
ing the network’s lifetime. We considered the peer-to-peer and
base-station centric network architectures. Both synchronous
and asynchronous communication paradigms were studied. For
synchronous networks, we found the exact analytical solutions



TABLE V
DELAY COMPARISON

# of hops Uniform-Base-a BalancED-Base-a
Delay (ms) Percent Delay (ms) Percent

1 0 10.92 0 11.19
2 9.6637 19.99 10.17 23.38
3 19.9445 38.45 20.08 43.90
4 27.4516 27.13 24.92 20.72
5 37.5902 3.49 27.03 0.78
Avg delay(ms) 18.36 16.57

for the energy distribution in the network for a symmetric
deterministic deployment. Next, we showed that finding the
exact energy distribution for asynchronous networks is an
NP-complete problem (rank one constraint). Thus, a convex
formulation for the problem was used to approximate the opti-
mal energy distribution. The derived distributions consider the
effect of the idle energy consumption. Furthermore, we have
extended the results to random networks and to distributed
networks with multiple base stations.

We presented comparisons of the energy efficiency, cover-
age area, and delay encountered by the derived distributions
and also the uniform distribution. We have also applied the de-
rived energy distributions to randomly deployed networks and
presented their energy efficiency. The evaluations show that,
networks’ lifetime of BalancED-Base scenarios are typically
20%-40% more than BalancED-P2P scenarios. Furthermore,
we have shown that derived distributions do not increase the
packet delays in the networks.

REFERENCES

[1] I. Stojmenovic and X. Lin, “Power-aware localized routing in wireless
networks,” IEEE Transaction Parallel Distributed Systems, vol. 12,
no. 11, pp. 1122–1133, 2001.

[2] Y. Cui, Y. Xue, and K. Nahrstedt, “Pa utility-based distributed maximum
lifetime routing algorithm forwireless networks,” IEEE Transaction
Vehicular Technology, vol. 55, no. 3, pp. 797–805, 2006.

[3] B. Yang, C. Long, X. Guan, and G. Feng, “Maximum lifetime rate
control and scheduling in multi-hop wireless networks,” in IEEE In-
ternational Conference on Networking, Sensing and Control, 2006, pp.
619– 624.

[4] B. Bollobas, Random Graphs, 2nd ed. 40 West 20th Street, New York,
NY 10011-4211, USA: Combridge University Press, 2001.

[5] M. Bhardwaj and A. Chandrakasan, “Bounding the lifetime of sensor
networks via optimal role assignments,” in INFOCOM, pp. 1587– 1596.

[6] B. Liu, Z. Liu, and D. Towsley, “On the capacity of hybrid wireless
networks,” in INFOCOM, 2003, pp. 1543–1552.

[7] A. Giridhar and P. R. Kumar, “Maximizing the functional lifetime of
sensor networks,” in IPSN, 2005, pp. 5–12.

[8] I. Paschalidis, L. Wei, and D. Starobinski, “Asymptotically optimal trans-
mission policies for large-scale low-power wireless sensor networks,”
IEEE/ACM Transactions on Networking (TON), pp. 105 – 118, Feb
2007.

[9] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, and V. Raghunathan,
“Adaptive duty cycling for energy harvesting systems,” in ISLPED, 2006,
pp. 180–185.

[10] A. Iranli, M. Maleki, and M. Perdram, “Energy efficiency strategies for
deployment of a two-level wireless sensor network,” in ISLPED, 2006,
pp. 2–10.

[11] G. Wang, M. Irwin, P. Berman, H. Fu, and T. Porta, “Optimizing sensor
movement planning for energy efficiency,” in ISLPED, 2005, pp. 215–
220.

[12] O. Akan and I. Akyildiz, “Event-to-sink reliable transport in wire-
less sensor networks,” EEE/ACM Transactions on Networking (TON),
vol. 13, no. 5, pp. 1003–1016, 2005.

[13] P. Taejoon and K. Shin, “Optimal tradeoffs for location-based routing
in large-scale ad hoc networks,” EEE/ACM Transactions on Networking
(TON), vol. 13, no. 2, pp. 398–410, 2005.

[14] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,
“Directed diffusion for wireless sensor networking,” IEEE/ACM Trans-
actions on Networking (TON), vol. 11, no. 1, pp. 2–16, 2003.

[15] E. Uysal-Biyikoglu, B. Prabhakar, and A. E. Gamal, “Energy-efficient
packet transmission over a wireless link,” EEE/ACM Transactions on
Networking (TON), vol. 10, no. 4, pp. 487–500, 2002.

[16] M. Bhardwaj, A. Chandrakasan, and T. Garnett, “Upper bounds on the
lifetime of sensor networks,” in ICC, 2001, pp. 785 – 790.

[17] D. Ganesan, R. Cristescu, and B. Beferull-Lozano, “Power-efficient
sensor placement and transmission structure for data gathering under
distortion constraints,” in IPSN, 2004, pp. 142–150.

[18] M. Maleki and M. Pedram, “Qom and lifetime-constrained random
deployment of sensor networks for minimum energy consumption,” in
IPSN, 2005, pp. 293–300.

[19] A. Krause, C. Guestrin, A. Gupta, and J. M. Kleinberg, “Near-optimal
sensor placements: maximizing information while minimizing commu-
nication cost,” in IPSN, 2006, pp. 2–10.

[20] J. H. Chang and L. Tassiulas, “Maximum lifetime routing in wireless
sensor networks,” IEEE/ACM Transactions on Networking (TON), pp.
609 – 619, August 2004.

[21] L. Hai, J. Xiaohua, W. Peng-Jun, Y. Chih-Wei, S. Makki, and N. Pissi-
nou, “Maximizing lifetime of sensor surveillance systems,” in Network-
ing, IEEE/ACM Transactions on, April 2007, pp. 334–345.

[22] S. J. Baek and G. de Veciana, “Spatial energy balancing through
proactive multipath routing in wireless multihop networks,” EEE/ACM
Transactions on Networking (TON), vol. 15, no. 1, pp. 93–104, 2007.

[23] K. Kar, A. Krishnamurthy, and N. Jaggi, “Dynamic node activation in
networks of rechargeable sensors,” EEE/ACM Transactions on Network-
ing (TON), vol. 14, no. 1, pp. 15–26, 2006.

[24] P. Cheng, C. Chuah, and X. Liu, “Energy-aware node placement in
wireless sensor networks,” in GLOBECOM, vol. 5, 2004, pp. 3210–
3214.

[25] Y. Chen, C. Chuah, and Q. Zhao, “Sensor placement for maximizing
lifetime per unit cost in wireless sensor networks,” in MILCOM, vol. 2,
2005, pp. 1097– 1102.

[26] R. Subramanian and F. Fekri, “Sleep scheduling and lifetime maximiza-
tion in sensor networks: fundamental limits and optimal solutions,” in
IPSN, 2006, pp. 218–225.

[27] F. Koushanfar, N. Taft, and M. Potkonjak, “Sleeping coordination for
comprehensive sensing using isotonic regression and domatic partitions,”
in INFOCOM, pp. 1– 13.

[28] L. Feeney and M. Nilsson, “Investigating the energy consumption of a
wireless interface in an ad hoc networking environment,” INFOCOM,
vol. 3, pp. 1548–1557, 2001.

[29] www.xbow.com, “Mica2 mote datasheet,” July,2003.
[30] C. B. Margi, K. Obraczka, and R. Manduchi, “Energy consumption

trade-offs in sensor networks,” in presented at 2005 CITRIS Corporate
Sponsor Day, on April 18th, 2005.

[31] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity
in large sensor networks,” Wireless Ad Hoc and Sensor Networks: An
International Journal, vol. 1, no. 1-2, pp. 89–123, 2005.

[32] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous wakeup for ad hoc
networks,” in international symposium on Mobile ad hoc networking
computing, 2003, pp. 35–45.

[33] M. Cardei and D.-Z. Du, “Improving wireless sensor network lifetime
through power aware organization,” ACM Wireless Networks, vol. 11,
no. 3, pp. 333–340, 2005.

[34] F. Alizadeh, “Interior point methods in semidefinite programming with
applications to combinatorial optimization,” SIAM Journal on Optimiza-
tion, vol. 5, no. 1, pp. 13–51, 1995.

[35] SeDuMi: self-dual minimization, “http://sedumi.mcmaster.ca/, seen in
June, 2008.”

[36] C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance vector rout-
ing,” in Proceedings of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, 1999, pp. 90–100.

APPENDIX A
PROOF (ASYNCHRONOUS)

As was shown in Figure 5, we look for the probability that
node vn sends a packet to node vm in one time step. Since
the hexagonal area is symmetric, we only find pvn→vm for the
horizontal edges in the Figure 5. By using the same notations



introduced in the BalancED-P2P-s section, pvn→vm can be
found as follows.

pvn→vm
=

∑

t∈{0,5}
p

(
vn → vm | R(vn→vm)t

)
p

(R(vn→vm)t

)

+
∑

s∈{0,5}
p

(
vn → vm | S(vn→vm)s

)
p

(S(vn→vm)s

)

+ p (vn → vm | Tvn→vm
) p (Tvn→vm

)
+ p (vn → vm | Qvn→vm) p (Qvn→vm) (25)

where vn → vm = {vn send a packet to vm}; R(vn→vm)0
=

{Rn,0 ∪ Ln,1 → Rm,3 ∪ Lm,4};
R(vn→vm)5

= {Rn,5 ∪ Ln,5 → Rm,2 ∪ Lm,2};
S(vn→vm)0

= {Rn,0 ∪ Ln,1 → Lm,3 ∪ {vm}};
S(vn→vm)5

= {Rn,5 ∪Ln,5 → Lm,3 ∪ {vm}};
Tvn→vm

= {Ln,0 ∪ {vn} → Lm,3 ∪ {vm}}; and Qn→m =
{ Ln,0 ∪ {vn} → Lm,2 ∪Rm,2 ∪ Lm,3 ∪Rm,3 ∪ Lm,4}.

We use a similar approach that was used to find pf (vn)
in section V-A. Using Equation 5, non-conditional terms in
Equation 25 can be easily found.
R(vn→vm)0

and R(vn→vm)5
can be found by using the same

procedure that was used in Section V-B. The only difference
is that when a packet arrives to vn, there will be fifty percent
chance that goes to vm; therefore,

p
(
vn → vm | R(vn→vm)0

)
=

1
2

1
| Rn,0 | + | Ln,1 | ×

∑

vm∈Rn,0∪Ln,1

(
Svm→vn,0 + Tvm→vn,0

Svm→vn,0

)

2Svm→vn,0+Tvm→vn,0
(26)

p
(
vn → vm | R(vn→vm)5

)
=

1
2

1
| Rn,5 | + | Ln,5 | ×

∑

vm∈Rn,5∪Ln,5

(
Svm→vn,5 + Tvm→vn,5

Svm→vn,5

)

2Svm→vn,5+Tvm→vn,5
(27)

where Svm→vn,i and Tvm→vn,i are defined in Section V.
Furthermore, to find p

(
vn → vm | S(vn→vm)s

)
, we use

similar expression as the Equation 11. Thus

p
(
vn → vm | R(vn→vm)0

)
=

1
2 (| Rn,0 | + | Ln,1 |) ×

∑

vh∈Rn,0∪Ln,1

Svh→vn,0+Tvh→vn,0∑

k=Svm→vn,0

(
k − 1

Svh→vn,0

)

2k−1
(28)

p
(
vn → vm | R(n→m)5

)
=

1
2 (| Rn5 | + | Ln5 |)

×

∑

vh∈Rn5∪Ln5

Sm→n,5+Th→n,5∑

k=Th→n,5

(
k − 1

Tvh→vn,5

)

2k−1
(29)

Finally, we should derive p (vn → vm | Tvn→vm) and
p (vn → vm | Qvn→vm). When a node in Ln,0 ∪ {vn} sends

a packet to a node in Lm,3 ∪ {vm}, always vn and vm are on
the unique shortest path between the sender and the receiver.
Therefore, vn has to forward the packet to vm.

p (vn → vm | Tvn→vm
) = 1 (30)

When Qvn→vm , similar to Equation 11, the packet that is sent
by Ln,0 ∪ {vn} can deviate from the Ln,0 ∪ {vm, vn} at each
forwarding step. Therefore,

p (vn → vm | Qvn→vm) =

1
| Ln,0 ∪ {vn} |

∑

vm∈Ln0∪{vn}

(
1
2

)Tvm→vn,0+1

(31)

By putting all terms together, now we can find pvn→vm
.

APPENDIX B
OPTIMAL DISTRIBUTION DERIVATION FOR THE CONVEX

OPTIMIZATION SOLUTION

We use two methods to retrieve energy approximation from
solution of convex optimization problem, Zopt, in Equation
23.

In the first method, we use matrix decomposition. Since we
have removed the rank one constrain, optimal value of Equa-
tion 24, Zopt, is not a rank-one matrix. Therefore, retrieving
U from Zopt is not straight forward. If we have a rank-one
approximation for Zopt, denoted by Ẑopt, all columns of Zopt

will be parallel. The first element of U is one. Therefore, each
column of Ẑopt can be scaled to find U ; then, finding energy
approximation, Ê1

n, from U is straight forward by Equation
15.

To approximate U , we do singular value decomposition
(SVD). In this method, we find the SVD of Zopt.

Zopt = WΣ V T (32)

where, W and V are two unitary matrices and Σ is a diagonal
matrix that is not necessary a rank-one matrix. Singular values
of Zopt are diagonal elements of diagonal matrix Σ and are
decreasingly ordered. If Zopt was rank-one matrix, Σ would
have only one non-zero element on its diagonal. Thus, a rank
one approximation of Zopt can be found by Ẑopt = W Σ̂V T

where Σ̂ is obtained by putting all the diagonal elements of
Σ to zero except for the first element.

In the second scheme for approximating the energy distri-
bution, we examine the structure of Z. By definition of Z, the
first column of Z is U . We can easily select the first column
of Ẑopt, and then Equation 15 would lead to an approximation
for energy, Ê2

n

Now, we have two approximations for BalancED-P2P-a
energy distribution and we will use combination of them.

Ên = (1− β)Ê1
n + βÊ2

n (33)

where β is a combining coefficient (0 ≤ β ≤ 1).



APPENDIX C
FORWARDING PROBABILITY FOR BALANCED-BASE

In BalancED-Base-s scenario, to find forwarding energy that
node vn needs, we consider two cases: first, node vn is located
in Rb,i; second, node vn is located in Lb,i (for i = 0...5). If
node vn is located in Rb,i.

pf (vn) = pf (vn | Rn,i → vb) p (Rn,i → vb)
+ pf (vn | Ln,i → vb) p (Ln,i → vb)
+ pf

(
vn | Ln,i+1(mode 6) → vb

)×
p

(
Ln,i+1(mode 6) → vb

)
(34)

Note that in these equations Rn,i and Ln,i refer to region
allocation by node vn and they are not the same as Rb,i and
Lb,i. From Subsection V-A, it is clear that

p (vn | Rn,i → vb) = p
(
vn | Rn,i → Rn,i+3(mode 6)

)

p (vn | Ln,i → vb) = p (vn | Ln,i → Gn,i)
p

(
vn | Ln,i+1(mode 6) → vb

)
=

p
(
vn | Ln,i+1(mode 6) → Gn,i+1(mode 6)

)
(35)

All the expressions in the right hand of above equations were
derived earlier; all elements of Equation 34 can be found from
Equations 6, 12, and 5.

Now consider the case that vn is in Lb,i. Again, we can
write

pf (vn) =
0∑

j=−1

pf (vn | Vi,j) p (Vi,j)

+
0∑

j=−1

pf (vn | Wi,2j+1) p (Wi,j)

+ pf (vn | Ui) p (Ui) (36)

where Vi,j =
{
Rn,i+j(mode 6) → vb

}
, Wi,j ={

Ln,i+j(mode 6) → {vb}
}

, and Ui,j = {Ln,i → {vb}}. In
these equations, we can also replace Ln,i+3(mode 6) instead of
vb and find their value from Equations 5, 10, and 11.

Now, we can find the total energy that each node requires
at each time step as follows.

Estep(n) =
1
N

Es + pf (vn ) Ef (37)

APPENDIX D
FINDING IDLE TIME

Figure 16 shows the working cycles of nodes in asyn-
chronous scenarios. A node vn wakes up periodically and
checks for the packets. If there is a packet, the nodes receives
it; otherwise, it sleeps for a random period of time. If node
vm wants to send a packet to vn at time t, it should wait h
seconds until node vn wakes up (Figure 16.)

Assume the wake up time is a Poisson random process.
Thus, sleep duration (Ts) is a random variable which is
exponentially distributed. i.e., if mean of sleep duration is α
then

fTs(Ts) =
1
α

e
Ts
α .

Check for packet

Sleep SleepSleep

A packet is received at 

time t

h

Fig. 16. In BalancED-p2p-a abd BalancED-base-a, nodes sleep random
durations to save energy.

Since Ts is exponentially distributed, it is memoryless; i.e.,

fTs(Ts|Ts > t) =
1
α

e
Ts−t

α .

Thus, waiting time h is also an exponential random variable
and

E{h} = α.

Node vm, in average, should wait α second for node vn to
wake up.

Davood Shamsi received his
B.Sc. degree in electrical engi-
neering and mathematics from
Sharif University of Technol-
ogy in 2006. Then, he joined
Electrical and Computer Engi-
neering school of Rice univer-
sity for graduate study. He is
currently working on sensitiv-
ity analysis in continuous and
discrete optimization and opti-
mal energy sensor networks.

Farinaz Koushanfar is an
assistant professor at the de-
partments of Electrical and
Computer Engineering (ECE)
and Computer Science (CS)
at Rice University since July
2006. Her research interests
are in distributed embedded
systems, sensor-based embed-
ded systems, data integrity,
hardware security and intellec-
tual property protection. She
has finished her PhD in Elec-
trical Engineering and Com-

puter Science, and her MA in Statistics at UC Berkeley in December
2005. Prior to joining Rice, she held the Coordinated Science Lab
(CSL) fellowship at the University of Illinois Urbana-Champaign. She
is the recipient of the DARPA/MTO Young Faculty Award across all
core technology areas, and the NSF CAREER Award. She has also
received Intel Open Collaborative Research fellowship, a best paper



award at Mobicom, NSF graduate student fellowship, and the UCLA
Woman4change leadership award.


