Regular Real Analysis

dc.citation.conferenceDate2013en_US
dc.citation.conferenceName28th Annual ACM/IEEE Symposium on Logic in Computer Scienceen_US
dc.citation.firstpage509en_US
dc.citation.journalTitleLICS '13 Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Scienceen_US
dc.citation.lastpage518en_US
dc.contributor.authorChaudhuri, Swaraten_US
dc.contributor.authorSankaranarayanan, Sriramen_US
dc.contributor.authorVardi, Moshe Y.en_US
dc.date.accessioned2014-11-21T21:56:32Zen_US
dc.date.available2014-11-21T21:56:32Zen_US
dc.date.issued2013en_US
dc.description.abstractWe initiate the study of regular real analysis, or the analysis of real functions that can be encoded by automata on infinite words. It is known that ω-automata can be used to represent {relations} between real vectors, reals being represented in exact precision as infinite streams. The regular functions studied here constitute the functional subset of such relations. We show that some classic questions in function analysis can become elegantly computable in the context of regular real analysis. Specifically, we present an automata-theoretic technique for reasoning about limit behaviors of regular functions, and obtain, using this method, a decision procedure to verify the continuity of a regular function. Several other decision procedures for regular functions-for finding roots, fix points, minima, etc.-are also presented. At the same time, we show that the class of regular functions is quite rich, and includes functions that are highly challenging to encode using traditional symbolic notation.en_US
dc.identifier.citationChaudhuri, Swarat, Sankaranarayanan, Sriram and Vardi, Moshe Y.. "Regular Real Analysis." <i>LICS '13 Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science,</i> (2013) Association for Computing Machinery: 509-518. http://dx.doi.org/10.1109/LICS.2013.57.en_US
dc.identifier.doihttp://dx.doi.org/10.1109/LICS.2013.57en_US
dc.identifier.urihttps://hdl.handle.net/1911/78493en_US
dc.language.isoengen_US
dc.publisherAssociation for Computing Machineryen_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by the Association for Computing Machinery.en_US
dc.titleRegular Real Analysisen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
lics13a.pdf
Size:
381.84 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: