Direct Plasmon-Driven Photoelectrocatalysis

dc.citation.firstpage6155en_US
dc.citation.issueNumber9en_US
dc.citation.journalTitleNano Lettersen_US
dc.citation.lastpage6161en_US
dc.citation.volumeNumber15en_US
dc.contributor.authorRobatjazi, Hosseinen_US
dc.contributor.authorBahauddin, Shah Mohammaden_US
dc.contributor.authorDoiron, Chloeen_US
dc.contributor.authorThomann, Isabellen_US
dc.contributor.orgLaboratory for Nanophotonics (LANP)en_US
dc.contributor.orgRice Quantum Instituteen_US
dc.date.accessioned2015-09-23T19:33:32Z
dc.date.available2015-09-23T19:33:32Z
dc.date.issued2015en_US
dc.descriptionNEWS COVERAGE: A news release based on this journal publication is available online: Rice researchers demo solar water-splitting technology [http://news.rice.edu/2015/09/04/rice-researchers-demo-solar-water-splitting-technology/]en_US
dc.description.abstractHarnessing the energy from hot charge carriers is an emerging research area with the potential to improve energy conversion technologies. Here we present a novel plasmonic photoelectrode architecture carefully designed to drive photocatalytic reactions by efficient, nonradiative plasmon decay into hot carriers. In contrast to past work, our architecture does not utilize a Schottky junction, the commonly used building block to collect hot carriers. Instead, we observed large photocurrents from a Schottky-free junction due to direct hot electron injection from plasmonic gold nanoparticles into the reactant species upon plasmon decay. The key ingredients of our approach are (i) an architecture for increased light absorption inspired by optical impedance matching concepts, (ii) carrier separation by a selective transport layer, and (iii) efficient hot-carrier generation and injection from small plasmonic Au nanoparticles to adsorbed water molecules. We also investigated the quantum efficiency of hot electron injection for different particle diameters to elucidate potential quantum effects while keeping the plasmon resonance frequency unchanged. Interestingly, our studies did not reveal differences in the hot-electron generation and injection efficiencies for the investigated particle dimensions and plasmon resonances.en_US
dc.identifier.citationRobatjazi, Hossein, Bahauddin, Shah Mohammad, Doiron, Chloe, et al.. "Direct Plasmon-Driven Photoelectrocatalysis." <i>Nano Letters,</i> 15, no. 9 (2015) American Chemical Society: 6155-6161. http://dx.doi.org/10.1021/acs.nanolett.5b02453.
dc.identifier.doihttp://dx.doi.org/10.1021/acs.nanolett.5b02453en_US
dc.identifier.urihttps://hdl.handle.net/1911/81706
dc.language.isoengen_US
dc.publisherAmerican Chemical Society
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by the American Chemical Society.en_US
dc.subject.keywordplasmonic solar energy conversionen_US
dc.subject.keywordhot-electronen_US
dc.subject.keywordquantum efficiencyen_US
dc.subject.keywordsolar water splittingen_US
dc.subject.keywordAu/NiOxen_US
dc.subject.keywordselective transport layeren_US
dc.titleDirect Plasmon-Driven Photoelectrocatalysisen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
DirectPlasmon.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
SuppInfo-DirectPlasmon.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description: