The emergence of three-dimensional chiral domain walls in polar vortices

Abstract

Chirality or handedness of a material can be used as an order parameter to uncover the emergent electronic properties for quantum information science. Conventionally, chirality is found in naturally occurring biomolecules and magnetic materials. Chirality can be engineered in a topological polar vortex ferroelectric/dielectric system via atomic-scale symmetry-breaking operations. We use four-dimensional scanning transmission electron microscopy (4D-STEM) to map out the topology-driven three-dimensional domain walls, where the handedness of two neighbor topological domains change or remain the same. The nature of the domain walls is governed by the interplay of the local perpendicular (lateral) and parallel (axial) polarization with respect to the tubular vortex structures. Unique symmetry-breaking operations and the finite nature of domain walls result in a triple point formation at the junction of chiral and achiral domain walls. The unconventional nature of the domain walls with triple point pairs may result in unique electrostatic and magnetic properties potentially useful for quantum sensing applications.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Susarla, S., Hsu, S., Gómez-Ortiz, F., García-Fernández, P., Savitzky, B. H., Das, S., Behera, P., Junquera, J., Ercius, P., Ramesh, R., & Ophus, C. (2023). The emergence of three-dimensional chiral domain walls in polar vortices. Nature Communications, 14(1), 4465. https://doi.org/10.1038/s41467-023-40009-2

Has part(s)
Forms part of
Rights
Except where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Citable link to this page