PME: pruning-based multi-size embedding for recommender systems

Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers Media S.A.
Description
Abstract

Embedding is widely used in recommendation models to learn feature representations. However, the traditional embedding technique that assigns a fixed size to all categorical features may be suboptimal due to the following reasons. In recommendation domain, the majority of categorical features' embeddings can be trained with less capacity without impacting model performance, thereby storing embeddings with equal length may incur unnecessary memory usage. Existing work that tries to allocate customized sizes for each feature usually either simply scales the embedding size with feature's popularity or formulates this size allocation problem as an architecture selection problem. Unfortunately, most of these methods either have large performance drop or incur significant extra time cost for searching proper embedding sizes. In this article, instead of formulating the size allocation problem as an architecture selection problem, we approach the problem from a pruning perspective and propose Pruning-based Multi-size Embedding (PME) framework. During the search phase, we prune the dimensions that have the least impact on model performance in the embedding to reduce its capacity. Then, we show that the customized size of each token can be obtained by transferring the capacity of its pruned embedding with significant less search cost. Experimental results validate that PME can efficiently find proper sizes and hence achieve strong performance while significantly reducing the number of parameters in the embedding layer.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Liu, Zirui, Song, Qingquan, Li, Li, et al.. "PME: pruning-based multi-size embedding for recommender systems." Frontiers in Big Data, 6, (2023) Frontiers Media S.A.: https://doi.org/10.3389/fdata.2023.1195742.

Has part(s)
Forms part of
Rights
Except where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license.  Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.
Citable link to this page