On Convergence of Minimization Methods: Attraction, Repulsion and Selection
dc.contributor.author | Zhang, Yin | en_US |
dc.contributor.author | Tapia, Richard | en_US |
dc.contributor.author | Velazquez, Leticia | en_US |
dc.date.accessioned | 2018-06-18T17:47:33Z | en_US |
dc.date.available | 2018-06-18T17:47:33Z | en_US |
dc.date.issued | 1999-03 | en_US |
dc.date.note | March 1999 (Revised August 1999) | en_US |
dc.description.abstract | In this paper, we introduce a rather straightforward but fundamental observation concerning the convergence of the general iteration process. x^(k+1) = x^k - alpha(x^k) [B(x^k)]^(-1) gradĀf(x^k) for minimizing a function f(x). We give necessary and sufficient conditions for a stationary point of f(x) to be a point of strong attraction of the iteration process. We will discuss various ramifications of this fundamental result, particularly for nonlinear least squares problems. | en_US |
dc.format.extent | 18 pp | en_US |
dc.identifier.citation | Zhang, Yin, Tapia, Richard and Velazquez, Leticia. "On Convergence of Minimization Methods: Attraction, Repulsion and Selection." (1999) <a href="https://hdl.handle.net/1911/101917">https://hdl.handle.net/1911/101917</a>. | en_US |
dc.identifier.digital | TR99-12 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/101917 | en_US |
dc.language.iso | eng | en_US |
dc.title | On Convergence of Minimization Methods: Attraction, Repulsion and Selection | en_US |
dc.type | Technical report | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1