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Abstract

In this paper� we revisit the convergence properties of the iteration process

xk�� � xk � ��xk�B�xk���rf�xk�

for minimizing a function f�x�� After reviewing some classic results and introducing the

notion of strong attraction� we give necessary and su�cient conditions for a stationary

point of f�x� to be a point of strong attraction for the iteration process� This result not

only gives a new algorithmic interpretation to the classic Ostrowski theorem� but also

provides insight into the interesting phenomenon called selective minimization� We also

present illustrative numerical examples arising from nonlinear least squares problems�
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� Introduction

We consider the unconstrained minimization problem

min f	x
� 	�
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where f � �n � � is assumed to be twice Frechet di�erentiable� Many iterative methods

for solving 	�
 can be represented by the general iteration�

xk�� 
 xk � �k	Bk
��rf	xk
� 	�


This iterative framework includes Newton�s method� quasi�Newton methods and gradient

methods with variant step�length control schemes� In the case of nonlinear least squares

problems� it also includes the Gauss�Newton and the Levenberg�Marquardt methods�

The convergence properties of the iterative framework 	�
 have often been studied

through the more general scheme of �xed�point iteration�

xk�� 
 T 	xk
 	�


for some function T � �n � �n� For 	�
� T 	x
 is de�ned as

T 	x
 
 x� �	x
B	x
��rf	x
� 	�


It is clear that any stationary point x� of f � where rf	x�
 
 �� is a �xed point of the

function 	�
 that satis�es the equation x 
 T 	x
�

The iterative framework 	�
 has been studied extensively and many results are available

for various choices of �k and Bk that guarantee convergence� for example see the classic

books by Ostrowski ���� Ortega and Rheinboldt ���� and Dennis and Schnabel ��� on this

subject�

A less frequently asked question is the following� Given certain conditions on �k and

Bk � what type of stationary points of f	x
 are or are not points of attraction of the iteration

	�
� In this paper� we present some observations in this aspect� A particular interesting

observation is that for proper choices of Bk and �k � it is possible to construct iteration 	�
 so

that certain undesirable minimizers of f	x
 become points of repulsion� while more desirable

minimizers remain points of attraction of iteration 	�
� We will call this phenomenon

selective minimization�

In order to classify �xed points of 	�
� we will need the derivative of T 	x
� T �	x
� at

stationary points of f	x
� The following proposition shows that for T �	x
 to exist at a

stationary point x� of f	x
� the function �	x
B	x
�� need not be di�erentiable at x��

instead� continuity at x� will su�ce� This result is a special case of ������ in Ortega and

Rheinboldt ���� For completeness� we include a short proof�

Proposition � Let x� be a stationary point of f	x
� Assume that �	x
 and B	x
 are

continuous at x� where B	x
 is also nonsingular� Then the derivative of T 	x
 in ��� exists

at x�� and

T �	x�
 
 I � �	x�
B	x�
��r�f	x�
� 	�


�



Proof� Let H	x
 � �	x
B	x
��� It su�ces to show that the derivative ofH	x
rf	x
 exists

at x� and is H	x�
r�f	x�
� The continuity of �	x
 and B	x
 at x� plus the nonsingularity

of B	x�
 imply the continuity of H	x
 at x�� Noting rf	x�
 
 �� we consider

�H	x� � h
rf	x� � h
�H	x�
rf	x�
�H	x�
r�f	x�
h��khk


 H	x� � h
�rf	x� � h
�rf	x�
�r�f	x�
h��khk

��H	x� � h
�H	x�
�	r�f	x�
h�khk
�

By continuity of H	x
 and di�erentiability of f	x
 at x�� both terms on the right�hand side

vanish as khk � �� This completes the proof�

We mention that the continuity assumption on B	x
 and �	x
 at x� may not always

be satis�ed by some popular methods� The following example is from Wolfe ���� When

the steepest descent method with exact line search is applied to the function f	x� y
 


x���� y��� starting from 	���� ���
� the iterates will converge to the stationary point 	�� �
�

However� the observed step size oscillates between � and ���� as the iterates approach the

stationary point�

This paper is organized as follows� In Sections �� we will introduce the de�nitions of

points of attraction and repulsion� and state some classic results on attraction and repulsion

for the iteration 	�
� In Section �� we give necessary and su�cient conditions for stationary

points of f	x
 to be points of attraction of iteration 	�
� The results of Section � are applied

to nonlinear least squares problems in section �� We devote Section � to the discussion of

selective minimization� Finally� in Section � we present two numerical examples to illustrate

that 	i
 convergence to a point of repulsion appears to be unlikely in general� and 	ii
 selective

minimization may be useful for certain global optimization problems�

In this paper� we will use the following notation� The spectral radius of a matrix M

is denoted by �	M
� and an eigenvalue by �i	M
� Moreover� �max	M
 and �min	M
 are�

respectively� the maximum and minimum eigenvalues of a symmetric matrix M � We use

the the usual partial ordering for symmetric matrices� A � B means A � B is positive

semide�nite� similarly for the relationships �� � and �� The norm k 	 k will be either the

Euclidean norm for vectors or the norm it induces for matrices� unless otherwise speci�ed�

� Points of Attraction and Repulsion

In this section� we state the de�nitions of points of attraction and of repulsion for the

iteration 	�
� �rst introduced by Ostrowski in ���� and then review some basic results in

regard to attraction and repulsion�

�
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De�nition � �Attraction and Repulsion	 Let X� be a �xed point of T 	x
� It is said

to be a point of attraction of the iteration ��� if there is a neighborhoods N of x� such that

for any point x� 
 N � the iterates fxkg generated by ��� all lie in N and converge to x��

Otherwise� it is a point of repulsion of iteration ����

The well�known Ostrowski Theorem 	Theorem ���� in ��� and �����
 in Ortega and

Rheinboldt ���
 states that a su�cient condition for a stationary point x� to be a point of

attraction of the iteration 	�
� assuming that T 	x
 is di�erentiable at x�� is that the spectral

radius of T �	x�
 be less than one� i�e�� �	T �	x�

 � ��

The above condition is su�cient but not necessary� There are indeed points of attraction

x� where �	T �	x�

 
 � 	see �����x in ���� for example
� For convenience of discussion� in

this paper we will call a stationary point x� satisfying the condition �	T �	x�

 � � a point

of strong attraction�

De�nition � �Strong Attraction	 A �xed point x� of T 	x
 is said to be a point of

strong attraction of the iteration ��� if T 	x
 is di	erentiable at x� and �	T �	x�

 � ��

On the other hand� Ostrowski also established 	Theorem ���� in ���
 that a su�cient

condition for a stationary point x� to be a point of repulsion of the iteration 	�
� again

assuming that T 	x
 is di�erentiable at x�� is that the spectral radius of T �	x�
 be greater

than one� i�e�� �	T �	x�

 	 �� Again this condition is su�cient but not necessary because

there are points of repulsion x� that satisfy �	T �	x�

 
 ��

At a �xed point x� of T 	x
� if all the eigenvalues of T �	x�
 have magnitude greater than

one� then it is not possible for a sequence fxkg generated by iteration 	�
 to converge to x��

Such a �xed point x� is termed a point of de�nite repulsion by Ostrowski 	see ��� in ���
�

On the other hand� there exist mappings T 	x
 so that iteration 	�
� when started from

certain initial points� generates iterates that converge to a point of repulsion 	see ���� in ����

for example
� Hence� convergence to a point of repulsion 	but not de�nite repulsion
 remains

a possibility� However� we feel safe to say that convergence to a point of repulsion appears

to be highly unlikely in practice� In Section �� we will present some numerical experiments

to demonstrate this point� A rigorous� quantitative study on this subject seems worthwhile�

� Necessary and Su�cient Conditions for Strong Attraction

We now present necessary and su�cient conditions for a stationary point of f	x
 to be

a point of strong attraction of iteration 	�
� The result itself is a rather straightforward

consequence of the condition �	T �	x�

 � � in the context of T 	x
 being de�ned by 	�
�

However� it does provide an interesting new interpretation to the classic result and� more

�



importantly� leads to a few useful observations that have not been fully exploited in the

literature�

Proposition � Let x� be a stationary point of f	x
 and T 	x
 be de�ned by ���� Assume

that

�i� B	x
 and �	x
 are continuous at x��

�ii� B	x�
 is symmetric positive de�nite� and �	x�
 	 ��

Then �	T �	x�

 � � if and only if

� � r�f	x�
 �
�B	x�


�	x�

� 	�


Moreover� �	T �	x�

 � � �i�e�� x� is a point of strong attraction� if and only if strict in


equalities hold in ����

Proof� We note that T �	x�
 is similar to the symmetric matrix

M 
 I � �	x�
B	x�
����r�f	x�
B	x�
�����

and �	T �	x�

 � � is equivalent to �� � �i	M
 � �� i�e��

�I �M � I�

The inequality M � I is equivalent to

�	x�
B	x�
����r�f	x�
B	x�
���� � ��

which is in turn equivalent to the left inequality of 	�
� On the other hand� the inequality

�I �M is equivalent to

�I � �	x�
B	x�
���� r�f	x�
 B	x�
���� � ��

or

B	x�
������B	x�
� �	x�
r�f	x�
�B	x�
���� � ��

which is in turn equivalent to the right inequality of 	�
� This proves 	�
� The proof of the

second assertion is entirely parallel�

The left inequality in 	�
 immediately implies the following fact�

Corollary � Under the assumptions of Proposition �� any stationary point of f	x
 where

the Hessian matrix has a negative eigenvalue is a point of repulsion of the iteration ����

�
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We recall that a stationary point of f	x
 is called a nondegenerate saddle point if the

Hessian matrix at this point has both positive and negative eigenvalues� We also recall that

a necessary condition for a stationary point of f	x
 to be a maximizer is that the Hessian

matrix at this point be negative semide�nite� In view of Corollary �� we have the following

observation�

Remark � In the iteration ���� if one keeps Bk positive de�nite� then under mild conditions

all nondegenerate saddle points of f	x
 and all maximizers of f	x
 where the Hessian is not

the zero matrix are points of repulsion
 hence� none of these points can be a point of strong

attraction of the iteration ����

The above fact about nondegenerate saddle points has been observed by Wolfe in ����

who conjectured that �steepest ascent will almost never converge to a stationary point at

which the Hessian of f is nonsingular and not negative de�nite�� Wolfe�s conjecture is close

to saying that convergence to a point of repulsion is highly improbable�

We call a stationary point x� a strong minimizer of f	x
 if r�f	x�
 � �� Thus� the left

inequality in 	�
 always holds at any strong minimizer� By considering the right inequality

in 	�
 for some particular choices of B	x�
� we immediately obtain the following known

facts�

Remark � Assume that �	x
 is continuous at the points of interest�

��� For B	x
 
 r�f	x
� any strong minimizer of f	x
 is a point of strong attraction if

and only if �	x�
 
 	�� �
� In particular� any strong minimizer is a point of attraction of

Newton�s method where �	x
 � ��

��� For B	x
 
 I �gradient methods�� any strong minimizer of f	x
 is a point of strong

attraction if and only if �	x�
 � ���max	r�f	x�

�

As is mentioned at the end of Section �� the continuity assumption on �	x
 at x� may

not always be satis�ed by some popular methods such as the steepest descent method with

exact line search� Finally� the following observation will be useful later�

Remark 
 Any minimizer x� is a point of repulsion if the Hessian matrix at x� is not

majorized by �B	x�
��	x�
�

� Nonlinear Least squares Problem

For the nonlinear least squares problem� we have

f	x
 

�

�
RT 	x
R	x
� 	�


�

-



where R � �n � �m� m 	 n� is twice continuously di�erentiable� The gradient and Hessian

of f	x
 are� respectively�

rf	x
 
 J	x
TR	x
 and r�f	x
 
 J	x
TJ	x
 � S	x
� 	�


where J	x
 is the Jacobian of R	x
 and

S	x
 

mX
i��

ri	x
r
�ri	x
� 	�


Consider the iteration 	�
 with �	x
 
 � and

B	x
 
 J	x
TJ	x
 � P 	x
�

In this case�

T 	x
 
 x� 	J	x
TJ	x
 � P 	x

��J	x
TR	x
� 	��


and at any stationary point x� of f	x


T �	x�
 
 	J	x�
TJ	x�
 � P 	x�

��	P 	x�
� S	x�

� 	��


assuming continuity of P 	x
 and nonsingularity of J	x
TJ	x
 � P 	x
 at x�� Several well�

known choices of P 	x
 are the following�

�� Newton�s method� P 	x
 
 S	x
�

�� the Gauss�Newton method� P 	x
 
 ��

�� the Levenberg�Marquardt method� P 	x
 
 
	x
I �

The Gauss�Newton method and the Levenberg�Marquardt method are popular choices for

nonlinear least squares problems because they do not require second�order derivatives�

Now consider the iteration

xk�� 
 T 	xk
� 	��


where T 	x
 is de�ned in 	��
� The structure of least squares problem allows a simpli�cation

of Proposition ��

Proposition 
 Let x� be a stationary point of f	x
 
 �
�
R	x
TR	x
 where f	x
 is twice

di	erentiable� Assume J	x
TJ	x
 � P 	x
 is continuous and symmetric positive de�nite at

x�� Then �	T �	x�

 � � if and only if

�J	x�
TJ	x�
 � S	x�
 � J	x�
TJ	x�
 � �P 	x�
� 	��


Moreover� �	T �	x�

 � � if and only if strict inequalities hold in �����

�

-



The right inequality in 	��
 says that the more �positive� P 	x�
 is� the more points of

attraction the iteration may have� In view of this� we compare the Gauss�Newton method

and the Levenberg�Marquardt method�

Proposition � Let x� be a stationary point of f	x
 
 �

�
R	x
TR	x
 where f	x
 is twice

di	erentiable and J	x
 has full column rank�

�� If x� is a point of repulsion of the Levenberg
Marquardt method� it is also a point of

repulsion of the Gauss
Newton method�

�� If x� is a point of strong attraction of the Gauss
Newton method� it is also a point of

strong attraction of the Levenberg
Marquardt method�

The converses are not necessarily true whenever 
	x�
 	 � in the Levenberg
Marquardt

method�

Analogous to Corollary �� we also have the following�

Corollary � Any stationary points x� of f	x
 
 �

�
R	x
TR	x
 where the Hessian matrix has

a negative eigenvalue� including all nondegenerate saddle points and maximizers where the

Hessian is not the zero matrix� are points of repulsion of the Gauss
Newton method whenever

J	x�
 has full column rank� The same statement holds for the Levenberg
Marquardt method

if either J	x�
 has full column rank or 
	x�
 	 ��

It is known that iterates are generally repelled from saddle points in the Gauss�Newton

method 	see Bj�orck ���� for example
� It appears to us that the same property for the

Levenberg�Marquardt method is less known�

� Selective Minimization

Proposition � implies that a strong minimizer can be a point of strong attraction of the

iteration 	�
 only if the corresponding Hessian matrix is majorized above by the matrix

�B	x�
��	x�
�

In most applications� one would ideally like to �nd a global minimizer� Short of that�

one would prefer local minimizers with low objective values� The fact that a given iterative

method may turn certain minimizers into points of repulsion could be a useful tool for

constructing algorithms whose iterates are attracted to desirable minimizers� but repelled

from some undesirable minimizers�

To demonstrate this� we consider applying the Gauss�Newton and Levenberg�Marquardt

methods to minimization of nonlinear� nonconvex least squares problems where the global

�



minimum value of the objective functions is zero or very small� For this type of problems�

under mild conditions the global minimizers are points of strong attraction while local

minimizers of high objective values are less likely to be points of strong attraction� as is

illustrated by the following two lemmas�

Lemma � Let x� be a strong minimizer of f	x
 
 �

�
R	x
TR	x
 where f	x
 is twice di	er


entiable� J	x
TJ	x
�P 	x
 is continuous and symmetric positive de�nite at x�� Then x� is

a point of strong attraction of the iteration ���� if either r�ri	x
� i 
 �� �� 	 	 	 � m� are not

all zero and

kR	x�
k �
�min�J	x

�
TJ	x�
 � �P 	x�
�Pm
i�� kr

�ri	x�
k
� 	��


or kR	x�
k 	 � and

mX
i��

kr�ri	x
�
k �

�min�J	x�
TJ	x�
 � �P 	x�
�

kR	x�
k
� 	��


Proof� It su�ces to show that the strict inequalities hold in 	��
� Note that the left strict

inequality in 	��
 � i�e�� �J	x�
TJ	x�
 � S	x
� holds at any strong minimizer� Since

j�max	S	x
�

j � kS	x�
k � kR	x�
k

�
mX
i��

kr�ri	x
�
k

�
�

the right strict inequality in 	��
� i�e�� S	x
 � J	x�
TJ	x�
 � �P 	x�
� holds if

kR	x�
k

�
mX
i��

kr�ri	x
�
k

�
� �min�J	x

�
TJ	x�
 � �P 	x�
��

which� under the respective conditions� leads to 	��
 and 	��
�

It is well�known that a strong minimizer x� is a point of strong attraction of the Gauss�

Newton method 	or the Levenberg�Marquardt method
 if either the residuals ri	x
�
 or the

Hessian matrices r�ri	x�
� i 
 �� �� 	 	 	 � m� are su�ciently small 	see Dennis and Steihaug

���� for example
� The above lemma is an extension to a slightly more general setting�

Now let us de�ne

�i 
 ri	x
�
�kR	x�
k�� i 
 �� �� 	 	 	 � m�

and

C� 

mX
i��

�ir
�ri	x

�
� 	��


Clearly� C� is a linear combination of the Hessian matrices r�ri	x
�
� i 
 �� �� 	 	 	 � m� where

the coe�cients �i satisfy j�ij 
 ��� �� and
Pm

i�� j�ij 
 �� To prove repulsion� an assumption

on C� is needed�

�

• 



Lemma � Let x� be a minimizer of f	x
 
 �

�
R	x
TR	x
 where f	x
 is twice di	erentiable

and J	x
TJ	x
 � P 	x
 is continuous and symmetric positive de�nite� Assume further that

�max	C
�
 	 � where C� is de�ned in ����� Then x� is a point of repulsion of the iteration

���� if

kR	x�
k� 	
�max	J	x

�
TJ	x�
 � �P 	x�



�max	C�

� 	��


Proof� We �rst note that S	x�
 
 kR	x�
k�C
�� A su�cient condition for x� to be a point

of repulsion of the iteration 	��
 is that

�max	S	x
�

 
 kR	x�
k��max	C

�
 	 �max	J	x
�
TJ	x�
 � �P 	x�

�

which violates the right inequality in 	��
� Clearly� the above inequality is equivalent to

	��
 whenever �max	C
�
 	 ��

Remark � Lemma � provides a guarantees that any strong minimizer with su�ciently

small residual value is a point of strong attraction of the iteration ����� On the other hand�

Lemma � shows that minimizers with su�ciently large residual values will become a point

of repulsion of the iteration ���� under some circumstances�

We have done some numerical experiments on applying the Gauss�Newton and the

Levenberg�Marquardt methods to global minimization of least squares problems where the

optimal residual value is either zero or very small� Our numerical results have shown that

the algorithms do skip some local minimizers� and have greater chances of converging to

a global minimizer than� say� Newton�s method which is attracted to any stationary point

under mild conditions�

For more general problems� it is also possible to construct minimization algorithms

that skip minimizers of high objective values while targeting lower�valued minimizers� For

example� the following is a simple scheme�

B	x
 


��
� I� f	x
 � ��

r�f	x
 �D	x
� otherwise�

where D	x
 is a diagonal matrix chosen to ensure B	x
 � �� and

�	x
 


��
� ��
� f	x
 � ��

�� otherwise�

where 
 	 �� With these choices� the iteration

xk�� 
 xk � �	xk
B	xk
��rf	xk


will have the properties�

��

• 



�� Any minimizer x� with f	x�
 � � and �max	r
�f	x�

 	 
 is a point of repulsion�

�� Any strong minimizer x� with f	x�
 � � is a point of strong attraction�

Although we do not claim that the above construction is of any practical value� we do

hope that combined with some random sampling techniques such as simulated annealing ����

the selective minimization property may lead to improved global optimization algorithms�

This topic merits further study� but is outside the scope of this short paper� Instead�

in the next section� we present a simple example showing the phenomenon of selective

minimization�

� Numerical Examples

In this section� we provide a couple of simple examples to illustrate the following points�

	i
 if fBkg is uniformly positive de�nite and f�kg uniformly positive� then convergence to

a point of repulsion seems to be highly unlikely in general� 	ii
 selective minimization does

occur for certain problems� All our numerical experiments were done using Matlab�

��� First Example� repulsion

We consider the following function f � �n � � 	Levy and G�omez ���
�

f	x
 
 sin�
�
�

�
	x� � �


�
�

n��X
i��

	xi � �

�

��

	
� � sin�

�
�

�
	xi�� � �


�

�
	xn � �


�

��
� 	��


This function has many local minima but a unique global minimum at x�i 
 �� i 
 �� �� � � � � n�

where f	x�
 
 ��

We use the gradient method to construct an iteration

xk�� 
 T 	xk
 � xk � �rf	xk
 	��


and always choose

� 	
�

�max	r�f	x�



so that at least one of the eigenvalues of T �	x�
 � I � �r�f	x�
 has an absolute value

greater than one� By this very construction� the global minimizer x� is a point of repulsion

of the iteration 	��
 since j�max	T
�	x�

j 	 ��

We applied iteration 	��
 to problem 	��
 for n 
 �� �� ��� ��� ���� The actual values of

the steplength � vary with n and are not of interest here� For each n value� we selected ���

random starting points close to x�� namely

x� 
 x� � �	rand	n� �
� ���
�

��



where � 
 ���� and rand is the Matlab command for generating a uniformly distributed

random n�vector with components in ������ The stopping criterion used in our experiments

is that either krf	xk
k � ����� or the number of iterations reaches ���� In all of these

numerical experiments� we did not observe a single case of convergence to the global mini�

mizer x�� which is a point of repulsion by our construction� although the starting points are

all very close to x�� These experiments give a rather strong indication that convergence to

a point of repulsion may be improbable in general�
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Figure �� Non�convergence to a point of repulsion

In Figure �� we present a speci�c example for n 
 � and

� 

�

�max	r�f	x�



 �������

For this choice of �� the three eigenvalues of T �	x�
 are

�� 
 ��� �� 
 �� 
 �������

In order to dramatize the situation� we choose a starting point x� 
 	�� ������� ������


so that x� � x� is in the direction of v� � the eigenvector direction corresponding to the

eigenvalue �� 
 ������� In the picture� the small circles represent the positions of the

iterates� and the numbers beside the circles are the iteration numbers� As one can see�

initially the iterates approach x� along the direction of v�� However� as the iterates get

closer to x� 	with krf	x
k 
 ����
� unable to stay in the direction of v� they start to drift

��



away from x� along the direction of v�� which is the eigenvector direction corresponding to

the eigenvalue �� 
 ���

��� Second Example� Selective Minimization

We now consider the following two�dimensional least squares problem

f	x� y
 

�

�
R	x� y
TR	x� y
� 	��


where� for � 
 ��� and � 
 ��

R	x� y
 


�
BBBBBBBBBBB�

� sin	�	� � x��



�	x��
�� � ��sin�	�	� � y��

����

y��

� sin	�	� � y��



�	y��
�� � ��sin�	�	� � x��

����

x��



CCCCCCCCCCCA
� 	��


This function f	x� y
 is symmetric about both the x�axis and the y�axis� and has a unique

global minimizer at the origin with zero�residual� We will concentrate our attention to the

square� �� � x� y � �� which will be considered to be the area of our interest� In this

square� the function has four local minimizers at

	x�� y�
 
 	�����������


with relatively high residual value f	x�� y�
 
 ������ The function also has four saddle

points in the square of interest at

	x�� y�
 
 	�����������


with residual value f	x�� y�
 
 ������ See Figure � for a plot of f	x� y
 in the square of

interest�

We apply the Gauss�newton method� i�e�� the iteration 	��
 with P 	x
 
 � in 	��
� to

minimizing f	x� y
 de�ned in 	��
 and 	��
� In our experiments� we have found that the

Gauss�newton method is always well de�ned in the square of interest�

From Lemma �� we know that the global minimizer at the origin is a point of strong

attraction for the Gauss�Newton iteration� On the other hand� our calculation shows that for

the Gauss�Newton iteration� �i	T
�	x

� i 
 �� �� are� respectively and approximately ������

and ����� at the four local minimizers� Therefore� they are points of de�nite repulsion�

��
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Figure �� The ��dimensional Test Function

The saddle points are nondegenerate and hence points of repulsion of the Gauss�Newton

iteration� In fact�

min
i�������n

j�i	T
�	x�

j � � 	��


holds at the saddle points which means that they are not points of de�nite repulsion�

For the purpose of comparison� we also apply the Levenberg�Marquardt method and the

Newton method to the problem as well� For the Levenberg�Marquardt method� we choose

P 	x
 
 ��I in 	��
� With this choice� all minimizers in the square� global or local� are points

of strong attraction� and the saddle points remain points of repulsion where 	��
 holds� On

the other hand� all the stationary points in the square are points of strong attraction of the

Newton method�

We run the three methods starting from the following grid of initial points in the �rst

quadrant�

	xi� yj
 
 	i� j
��� � � i� j � ���

Since the function is symmetric about both axes� we can duplicate the behavior of the

methods in the �rst quadrant in the other three quadrants� For each method and each

initial point� we record whether or not the iterates converge to the global minimizer at

the origin� or to one of the other stationary points 	some may be outside of the square of

interest
� or do not converge within a prescribed maximum number of iterations� which is

set to ��� in our experiments� The convergence criterion is that the norm of the gradient

��



be less that �����

We summarize the numerical results for the three methods below�

�� Gauss�Newton� From all the starting points without exception� the Gauss�Newton

method converged to the global minimizer at the origin� We note that never did any

starting point lead to a point of repulsion 	saddle point
 no matter how close it was�

�� Levenberg�Marquardt� With P 	x
 
 ��I for the Levenberg�Marquardt method�

all the starting points led to one of the �ve minimizers in the square� with around

�� to the global minimizer and the rest �� to the local ones� Again� never did a

starting points lead to a saddle point�

�� Newton� For the Newton method� about �� of the starting points led to the global

minimizer� and about �� to other stationary points in the square� The rest of points

either led to stationary points outside the square� or were such that the method did

not terminate after ��� iterations�
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Figure �� Estimated Regions of Attraction for the Gauss�Newton Method

In Figures ���� we plot the 	estimated
 region of attraction of the global minimizer and

the combined region of attraction of all the other stationary points in the square for the

three methods� respectively� The asterisks represent points from which a method converged

to the global minimizer 	in the pictures on the left
 or to one of the other stationary points

inside the square 	in the pictures on the right
� On the background� we also plot the contour

of the test function�

In the picture on the right side of Figure �� it appears that at each corner an area of

attraction of the local minimizer is separated by a narrow band from an area of attraction

of the nearby saddle point�
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Figure �� Estimated Regions of Attraction for the Levenberg�Marquardt Method
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Figure �� Estimated Regions of Attraction for the Newton Method
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� Final Remarks

Concerning the general iteration process

xk�� 
 xk � �k	Bk
��rf	xk
�

Proposition � provides a new interpretation to the classic Ostrowski theorem and leads to

some interesting observations� We consider the following two to be particularly worthwhile�

Firstly� as long as one keeps fBkg uniformly positive de�nite and f�kg bounded away

from zero� then the undesirable case of converging to a nondegenerate saddle point should

not be of general concern� This statement is based on the premise that convergence to

a point of repulsion is unlikely� which seems to be well supported by empirical evidence�

Further quanti�cation in this direction is certainly desirable�

Secondly� if one does not always enforce monotone descent� then under favorable condi�

tions a method can actually generate iterates that skip undesirable local minimizers while

still being attracted to desirable� global minimizers� It is not surprising that a minimization

algorithm can fail to converge to a minimum if monotone decrease in the function value is

not enforced� However� it is useful to know that under proper conditions� certain minimiza�

tion algorithms will only escape from local minima� but never from a global minimum�
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