Application of Micro Quartz Tuning Fork in Trace Gas Sensing by Use of Quartz-Enhanced Photoacoustic Spectroscopy

dc.citation.articleNumber5240en_US
dc.citation.issueNumber23en_US
dc.citation.journalTitleSensorsen_US
dc.citation.volumeNumber19en_US
dc.contributor.authorLin, Haoyangen_US
dc.contributor.authorHuang, Zhaoen_US
dc.contributor.authorKan, Ruifengen_US
dc.contributor.authorZheng, Huadanen_US
dc.contributor.authorLiu, Yihuaen_US
dc.contributor.authorLiu, Binen_US
dc.contributor.authorDong, Linpengen_US
dc.contributor.authorZhu, Wenguoen_US
dc.contributor.authorTang, Jieyuanen_US
dc.contributor.authorYu, Jianhuien_US
dc.contributor.authorChen, Zheen_US
dc.contributor.authorTittel, Frank K.en_US
dc.date.accessioned2020-02-14T16:39:59Zen_US
dc.date.available2020-02-14T16:39:59Zen_US
dc.date.issued2019en_US
dc.description.abstractA novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor based on a micro quartz tuning fork (QTF) is reported. As a photoacoustic transducer, a novel micro QTF was 3.7 times smaller than the usually used standard QTF, resulting in a gas sampling volume of ~0.1 mm3. As a proof of concept, water vapor in the air was detected by using 1.39 μm distributed feedback (DFB) laser. A detailed analysis of the performance of a QEPAS sensor based on the micro QTF was performed by detecting atmosphere H2O. The laser focus position and the laser modulation depth were optimized to improve the QEPAS excitation efficiency. A pair of acoustic micro resonators (AmRs) was assembled with the micro QTF in an on-beam configuration to enhance the photoacoustic signal. The AmRs geometry was optimized to amplify the acoustic resonance. With a 1 s integration time, a normalized noise equivalent absorption coefficient (NNEA) of 1.97 × 10−8 W·cm−1·Hz−1/2 was achieved when detecting H2O at less than 1 atm.en_US
dc.identifier.citationLin, Haoyang, Huang, Zhao, Kan, Ruifeng, et al.. "Application of Micro Quartz Tuning Fork in Trace Gas Sensing by Use of Quartz-Enhanced Photoacoustic Spectroscopy." <i>Sensors,</i> 19, no. 23 (2019) MDPI: https://doi.org/10.3390/s19235240.en_US
dc.identifier.digitalsensors-19-05240en_US
dc.identifier.doihttps://doi.org/10.3390/s19235240en_US
dc.identifier.urihttps://hdl.handle.net/1911/108064en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsThis is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citeden_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subject.keywordquartz tuning forken_US
dc.subject.keywordphotoacoustic spectroscopyen_US
dc.subject.keywordquartz-enhanced photoacoustic spectroscopyen_US
dc.subject.keywordacoustic detection moduleen_US
dc.titleApplication of Micro Quartz Tuning Fork in Trace Gas Sensing by Use of Quartz-Enhanced Photoacoustic Spectroscopyen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-19-05240.pdf
Size:
3.12 MB
Format:
Adobe Portable Document Format