A simple proof of the restricted isometry property for random matrices

dc.citation.bibtexNamearticleen_US
dc.citation.journalTitleConstructive Approximationen_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.authorDavenport, Mark A.en_US
dc.contributor.authorDeVore, Ronald A.en_US
dc.contributor.authorWakin, Michael B.en_US
dc.date.accessioned2008-08-19T04:22:43Zen_US
dc.date.available2008-08-19T04:22:43Zen_US
dc.date.issued2007-01-18en_US
dc.description.abstractWe give a simple technique for verifying the Restricted Isometry Property (as introduced by Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has two main ingredients: (i) concentration inequalities for random inner products that have recently provided algorithmically simple proofs of the Johnson–Lindenstrauss lemma; and (ii) covering numbers for finite-dimensional balls in Euclidean space. This leads to an elementary proof of the Restricted Isometry Property and brings out connections between Compressed Sensing and the Johnson–Lindenstrauss lemma. As a result, we obtain simple and direct proofs of Kashin’s theorems on widths of finite balls in Euclidean space (and their improvements due to Gluskin) and proofs of the existence of optimal Compressed Sensing measurement matrices. In the process, we also prove that these measurements have a certain universality with respect to the sparsity-inducing basis.en_US
dc.description.sponsorshipThis research was supported by Office of Naval Research grants ONR N00014-03-1-0051, ONR/ DEPSCoR N00014-03-1-0675, ONR/DEPSCoR N00014-00-1-0470, and ONR N00014-02-1-0353; Army Research Office contract DAAD 19-02-1-0028; AFOSR grants UF/USAF F49620-03-1-0381 and FA9550- 04-0148; DARPA grant N66001-06-1-2011; NSF grants DMS-354707, CCF-0431150, CNS-0435425, and CNS-0520280; and the Texas Instruments Leadership University Program.en_US
dc.identifier.citationR. G. Baraniuk, M. A. Davenport, R. A. DeVore and M. B. Wakin, "A simple proof of the restricted isometry property for random matrices," <i>Constructive Approximation,</i> 2007.en_US
dc.identifier.doihttp://dx.doi.org/10.1007/s00365-007-9003-xen_US
dc.identifier.urihttps://hdl.handle.net/1911/21683en_US
dc.language.isoengen_US
dc.subjectcompressed sensingen_US
dc.subjectsamplingen_US
dc.subjectrandom matricesen_US
dc.subjectconcentration inequalitiesen_US
dc.titleA simple proof of the restricted isometry property for random matricesen_US
dc.title.alternativeThe Johnson-Lindenstrauss lemma meets compressed sensingen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JL_RIP.pdf
Size:
323.92 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections