A simple proof of the restricted isometry property for random matrices

Date
2007-01-18
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

We give a simple technique for verifying the Restricted Isometry Property (as introduced by Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has two main ingredients: (i) concentration inequalities for random inner products that have recently provided algorithmically simple proofs of the Johnson–Lindenstrauss lemma; and (ii) covering numbers for finite-dimensional balls in Euclidean space. This leads to an elementary proof of the Restricted Isometry Property and brings out connections between Compressed Sensing and the Johnson–Lindenstrauss lemma. As a result, we obtain simple and direct proofs of Kashin’s theorems on widths of finite balls in Euclidean space (and their improvements due to Gluskin) and proofs of the existence of optimal Compressed Sensing measurement matrices. In the process, we also prove that these measurements have a certain universality with respect to the sparsity-inducing basis.

Description
Advisor
Degree
Type
Journal article
Keywords
compressed sensing, sampling, random matrices, concentration inequalities
Citation

R. G. Baraniuk, M. A. Davenport, R. A. DeVore and M. B. Wakin, "A simple proof of the restricted isometry property for random matrices," Constructive Approximation, 2007.

Has part(s)
Forms part of
Rights
Link to license
Citable link to this page
Collections