Vector bin-and-cancel for MIMO distributed full-duplex

dc.contributor.authorBai, Jingwen
dc.contributor.authorSabharwal, Ashutosh
dc.date.accessioned2017-08-21T07:23:15Z
dc.date.available2017-08-21T07:23:15Z
dc.date.issued2017
dc.date.updated2017-08-21T07:23:15Z
dc.description.abstractAbstract In a multi-input multi-output (MIMO) full-duplex network, where an in-band full-duplex infrastructure node communicates with two half-duplex mobiles supporting simultaneous up- and downlink flows, the inter-mobile interference between the up- and downlink mobiles limits the system performance. We study the impact of leveraging an out-of-band side channel between mobiles in such network under different channel models. For time-invariant channels, we aim to characterize the generalized degrees-of-freedom (GDoF) of the side-channel-assisted MIMO full-duplex network. For slow-fading channels, we focus on the diversity-multiplexing tradeoff (DMT) of the system with various assumptions as to the availability of channel state information at the transmitter (CSIT). The key to the optimal performance is a vector bin-and-cancel strategy leveraging Han-Kobayashi message splitting, which is shown to achieve the system capacity region to within a constant bit. We quantify how the side channel improve the GDoF and DMT compared to a system without the extra orthogonal spectrum. The insights gained from our analysis reveal (i) the tradeoff between spatial resources from multiple antennas at different nodes and spectral resources of the side channel and (ii) the interplay between the channel uncertainty at the transmitter and use of the side channel.
dc.identifier.citationBai, Jingwen and Sabharwal, Ashutosh. "Vector bin-and-cancel for MIMO distributed full-duplex." (2017) Springer International Publishing: http://dx.doi.org/10.1186/s13638-017-0919-y.
dc.identifier.doihttp://dx.doi.org/10.1186/s13638-017-0919-y
dc.identifier.urihttps://hdl.handle.net/1911/97364
dc.language.isoeng
dc.publisherSpringer International Publishing
dc.rightsThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
dc.rights.holderThe Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleVector bin-and-cancel for MIMO distributed full-duplex
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13638_2017_Article_919.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: