Anderson localization for quasi-periodic CMV matrices and quantum walks
dc.citation.firstpage | 1978 | en_US |
dc.citation.issueNumber | 6 | en_US |
dc.citation.journalTitle | Journal of Functional Analysis | en_US |
dc.citation.lastpage | 2006 | en_US |
dc.citation.volumeNumber | 276 | en_US |
dc.contributor.author | Wang, Fengpeng | en_US |
dc.contributor.author | Damanik, David | en_US |
dc.date.accessioned | 2019-08-21T19:16:16Z | en_US |
dc.date.available | 2019-08-21T19:16:16Z | en_US |
dc.date.issued | 2019 | en_US |
dc.description.abstract | We consider CMV matrices, both standard and extended, with analytic quasi-periodic Verblunsky coefficients and prove Anderson localization in the regime of positive Lyapunov exponents. This establishes the CMV analog of a result Bourgain and Goldstein proved for discrete one-dimensional Schrödinger operators. We also prove a similar result for quantum walks on the integer lattice with suitable analytic quasi-periodic coins. | en_US |
dc.identifier.citation | Wang, Fengpeng and Damanik, David. "Anderson localization for quasi-periodic CMV matrices and quantum walks." <i>Journal of Functional Analysis,</i> 276, no. 6 (2019) Elsevier: 1978-2006. https://doi.org/10.1016/j.jfa.2018.10.016. | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.jfa.2018.10.016 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/106273 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier. | en_US |
dc.subject.keyword | CMV matrices | en_US |
dc.subject.keyword | Quasi-periodic coefficients | en_US |
dc.subject.keyword | Anderson localization | en_US |
dc.subject.keyword | Quantum walks | en_US |
dc.title | Anderson localization for quasi-periodic CMV matrices and quantum walks | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | pre-print | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1804.00301.pdf
- Size:
- 272.79 KB
- Format:
- Adobe Portable Document Format
- Description: