Anderson localization for quasi-periodic CMV matrices and quantum walks

dc.citation.firstpage1978en_US
dc.citation.issueNumber6en_US
dc.citation.journalTitleJournal of Functional Analysisen_US
dc.citation.lastpage2006en_US
dc.citation.volumeNumber276en_US
dc.contributor.authorWang, Fengpengen_US
dc.contributor.authorDamanik, Daviden_US
dc.date.accessioned2019-08-21T19:16:16Zen_US
dc.date.available2019-08-21T19:16:16Zen_US
dc.date.issued2019en_US
dc.description.abstractWe consider CMV matrices, both standard and extended, with analytic quasi-periodic Verblunsky coefficients and prove Anderson localization in the regime of positive Lyapunov exponents. This establishes the CMV analog of a result Bourgain and Goldstein proved for discrete one-dimensional Schrödinger operators. We also prove a similar result for quantum walks on the integer lattice with suitable analytic quasi-periodic coins.en_US
dc.identifier.citationWang, Fengpeng and Damanik, David. "Anderson localization for quasi-periodic CMV matrices and quantum walks." <i>Journal of Functional Analysis,</i> 276, no. 6 (2019) Elsevier: 1978-2006. https://doi.org/10.1016/j.jfa.2018.10.016.en_US
dc.identifier.doihttps://doi.org/10.1016/j.jfa.2018.10.016en_US
dc.identifier.urihttps://hdl.handle.net/1911/106273en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier.en_US
dc.subject.keywordCMV matricesen_US
dc.subject.keywordQuasi-periodic coefficientsen_US
dc.subject.keywordAnderson localizationen_US
dc.subject.keywordQuantum walksen_US
dc.titleAnderson localization for quasi-periodic CMV matrices and quantum walksen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpre-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1804.00301.pdf
Size:
272.79 KB
Format:
Adobe Portable Document Format
Description: