Networks with controlled chirality via self-assembly of chiral triblock terpolymers

Abstract

Nanonetwork-structured materials can be found in nature and synthetic materials. A double gyroid (DG) with a pair of chiral networks but opposite chirality can be formed from the self-assembly of diblock copolymers. For triblock terpolymers, an alternating gyroid (GA) with two chiral networks from distinct end blocks can be formed; however, the network chirality could be positive or negative arbitrarily, giving an achiral phase. Here, by taking advantage of chirality transfer at different length scales, GA with controlled chirality can be achieved through the self-assembly of a chiral triblock terpolymer. With the homochiral evolution from monomer to multichain domain morphology through self-assembly, the triblock terpolymer composed of a chiral end block with a single-handed helical polymer chain gives the chiral network from the chiral end block having a particular handed network. Our real-space analyses reveal the preferred chiral sense of the network in the GA, leading to a chiral phase.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Wang, Hsiao-Fang, Chiu, Po-Ting, Yang, Chih-Ying, et al.. "Networks with controlled chirality via self-assembly of chiral triblock terpolymers." Science Advances, 6, no. 42 (2020) AAAS: https://doi.org/10.1126/sciadv.abc3644.

Has part(s)
Forms part of
Rights
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
Citable link to this page