High-surface-area corundum nanoparticles by resistive hotspot-induced phase transformation

dc.citation.articleNumber5027en_US
dc.citation.journalTitleNature Communicationsen_US
dc.citation.volumeNumber13en_US
dc.contributor.authorDeng, Bingen_US
dc.contributor.authorAdvincula, Paul A.en_US
dc.contributor.authorLuong, Duy Xuanen_US
dc.contributor.authorZhou, Jinganen_US
dc.contributor.authorZhang, Boyuen_US
dc.contributor.authorWang, Zheen_US
dc.contributor.authorMcHugh, Emily A.en_US
dc.contributor.authorChen, Jinhangen_US
dc.contributor.authorCarter, Robert A.en_US
dc.contributor.authorKittrell, Carteren_US
dc.contributor.authorLou, Junen_US
dc.contributor.authorZhao, Yujien_US
dc.contributor.authorYakobson, Boris I.en_US
dc.contributor.authorZhao, Yufengen_US
dc.contributor.authorTour, James M.en_US
dc.contributor.orgSmalley-Curl Instituteen_US
dc.contributor.orgNanoCarbon Centeren_US
dc.contributor.orgWelch Institute for Advanced Materialsen_US
dc.date.accessioned2022-09-29T15:06:38Zen_US
dc.date.available2022-09-29T15:06:38Zen_US
dc.date.issued2022en_US
dc.description.abstractHigh-surface-area α-Al2O3 nanoparticles are used in high-strength ceramics and stable catalyst supports. The production of α-Al2O3 by phase transformation from γ-Al2O3 is hampered by a high activation energy barrier, which usually requires extended high-temperature annealing (~1500 K, > 10 h) and suffers from aggregation. Here, we report the synthesis of dehydrated α-Al2O3 nanoparticles (phase purity ~100%, particle size ~23 nm, surface area ~65 m2 g−1) by a pulsed direct current Joule heating of γ-Al2O3. The phase transformation is completed at a reduced bulk temperature and duration (~573 K, < 1 s) via an intermediate δʹ-Al2O3 phase. Numerical simulations reveal the resistive hotspot-induced local heating in the pulsed current process enables the rapid transformation. Theoretical calculations show the topotactic transition (from γ- to δʹ- to α-Al2O3) is driven by their surface energy differences. The α-Al2O3 nanoparticles are sintered to nanograined ceramics with hardness superior to commercial alumina and approaching that of sapphire.en_US
dc.identifier.citationDeng, Bing, Advincula, Paul A., Luong, Duy Xuan, et al.. "High-surface-area corundum nanoparticles by resistive hotspot-induced phase transformation." <i>Nature Communications,</i> 13, (2022) Springer Nature: https://doi.org/10.1038/s41467-022-32622-4.en_US
dc.identifier.digitals41467-022-32622-4en_US
dc.identifier.doihttps://doi.org/10.1038/s41467-022-32622-4en_US
dc.identifier.urihttps://hdl.handle.net/1911/113448en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleHigh-surface-area corundum nanoparticles by resistive hotspot-induced phase transformationen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-022-32622-4.pdf
Size:
3.64 MB
Format:
Adobe Portable Document Format