Designing Automated, High-throughput, Continuous Cell Growth Experiments Using eVOLVER

dc.citation.articleNumbere59652en_US
dc.citation.journalTitleJournal of Visualized Experimentsen_US
dc.citation.volumeNumber147en_US
dc.contributor.authorHeins, Zachary J.en_US
dc.contributor.authorMancuso, Christopher P.en_US
dc.contributor.authorKiriakov, Szilviaen_US
dc.contributor.authorWong, Brandon G.en_US
dc.contributor.authorBashor, Caleb J.en_US
dc.contributor.authorKhalil, Ahmad S.en_US
dc.date.accessioned2019-11-22T16:19:56Zen_US
dc.date.available2019-11-22T16:19:56Zen_US
dc.date.issued2019en_US
dc.description.abstractContinuous culture methods enable cells to be grown under quantitatively controlled environmental conditions, and are thus broadly useful for measuring fitness phenotypes and improving our understanding of how genotypes are shaped by selection. Extensive recent efforts to develop and apply niche continuous culture devices have revealed the benefits of conducting new forms of cell culture control. This includes defining custom selection pressures and increasing throughput for studies ranging from long-term experimental evolution to genome-wide library selections and synthetic gene circuit characterization. The eVOLVER platform was recently developed to meet this growing demand: a continuous culture platform with a high degree of scalability, flexibility, and automation. eVOLVER provides a single standardizing platform that can be (re)-configured and scaled with minimal effort to perform many different types of high-throughput or multi-dimensional growth selection experiments. Here, a protocol is presented to provide users of the eVOLVER framework a description for configuring the system to conduct a custom, large-scale continuous growth experiment. Specifically, the protocol guides users on how to program the system to multiplex two selection pressures - temperature and osmolarity - across many eVOLVER vials in order to quantify fitness landscapes of Saccharomyces cerevisiae mutants at fine resolution. We show how the device can be configured both programmatically, through its open-source web-based software, and physically, by arranging fluidic and hardware layouts. The process of physically setting up the device, programming the culture routine, monitoring and interacting with the experiment in real-time over the internet, sampling vials for subsequent offline analysis, and post experiment data analysis are detailed. This should serve as a starting point for researchers across diverse disciplines to apply eVOLVER in the design of their own complex and high-throughput cell growth experiments to study and manipulate biological systems.en_US
dc.identifier.citationHeins, Zachary J., Mancuso, Christopher P., Kiriakov, Szilvia, et al.. "Designing Automated, High-throughput, Continuous Cell Growth Experiments Using eVOLVER." <i>Journal of Visualized Experiments,</i> 147, (2019) JoVE: https://doi.org/10.3791/59652.en_US
dc.identifier.digitaljove-protocol-59652en_US
dc.identifier.doihttps://doi.org/10.3791/59652en_US
dc.identifier.urihttps://hdl.handle.net/1911/107717en_US
dc.language.isoengen_US
dc.publisherJoVEen_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.titleDesigning Automated, High-throughput, Continuous Cell Growth Experiments Using eVOLVERen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jove-protocol-59652.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format