Disentangling superconducting and magnetic orders in NaFe1−xNixAs using muon spin rotation

dc.citation.articleNumber224508
dc.citation.issueNumber22
dc.citation.journalTitlePhysical Review B
dc.citation.volumeNumber97
dc.contributor.authorCheung, Sky C.
dc.contributor.authorGuguchia, Zurab
dc.contributor.authorFrandsen, Benjamin A.
dc.contributor.authorGong, Zizhou
dc.contributor.authorYamakawa, Kohtaro
dc.contributor.authorAlmeida, Dalson E.
dc.contributor.authorOnuorah, Ifeanyi J.
dc.contributor.authorBonfá, Pietro
dc.contributor.authorMiranda, Eduardo
dc.contributor.authorWang, Weiyi
dc.contributor.authorTam, David W.
dc.contributor.authorSong, Yu
dc.contributor.authorCao, Chongde
dc.contributor.authorCai, Yipeng
dc.contributor.authorHallas, Alannah M.
dc.contributor.authorWilson, Murray N.
dc.contributor.authorMunsie, Timothy J.S.
dc.contributor.authorLuke, Graeme
dc.contributor.authorChen, Bijuan
dc.contributor.authorDai, Guangyang
dc.contributor.authorJin, Changqing
dc.contributor.authorGuo, Shengli
dc.contributor.authorNing, Fanlong
dc.contributor.authorFernandes, Rafael M.
dc.contributor.authorDe Renzi, Roberto
dc.contributor.authorDai, Pengcheng
dc.contributor.authorUemura, Yasutomo J.
dc.date.accessioned2018-09-26T14:52:39Z
dc.date.available2018-09-26T14:52:39Z
dc.date.issued2018
dc.description.abstractMuon spin rotation and relaxation studies have been performed on a “111” family of iron-based superconductors, NaFe1−xNixAs, using single crystalline samples with Ni concentrations x=0, 0.4, 0.6, 1.0, 1.3, and 1.5%. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic moment size and the volume fraction of the magnetically ordered regions. For x=0 and 0.4%, a transition to a nearly-homogeneous long range magnetically ordered state is observed, while for x≳0.4% magnetic order becomes more disordered and is completely suppressed for x=1.5%. The magnetic volume fraction continuously decreases with increasing x. Development of superconductivity in the full volume is inferred from Meissner shielding results for x≳0.4%. The combination of magnetic and superconducting volumes implies that a spatially-overlapping coexistence of magnetism and superconductivity spans a large region of the T−x phase diagram for NaFe1−xNixAs. A strong reduction of both the ordered moment size and the volume fraction is observed below the superconducting TC for x=0.6, 1.0, and 1.3%, in contrast to other iron pnictides in which one of these two parameters exhibits a reduction below TC, but not both. The suppression of magnetic order is further enhanced with increased Ni doping, leading to a reentrant nonmagnetic state below TC for x=1.3%. The reentrant behavior indicates an interplay between antiferromagnetism and superconductivity involving competition for the same electrons. These observations are consistent with the sign-changing s± superconducting state, which is expected to appear on the verge of microscopic coexistence and phase separation with magnetism. We also present a universal linear relationship between the local ordered moment size and the antiferromagnetic ordering temperature TN across a variety of iron-based superconductors. We argue that this linear relationship is consistent with an itinerant-electron approach, in which Fermi surface nesting drives antiferromagnetic ordering. In studies of superconducting properties, we find that the T=0 limit of superfluid density follows the linear trend observed in underdoped cuprates when plotted against TC. This paper also includes a detailed theoretical prediction of the muon stopping sites and provides comparisons with experimental results.
dc.identifier.citationCheung, Sky C., Guguchia, Zurab, Frandsen, Benjamin A., et al.. "Disentangling superconducting and magnetic orders in NaFe1−xNixAs using muon spin rotation." <i>Physical Review B,</i> 97, no. 22 (2018) American Physical Society: https://doi.org/10.1103/PhysRevB.97.224508.
dc.identifier.digitalPhysRevB.97.224508
dc.identifier.doihttps://doi.org/10.1103/PhysRevB.97.224508
dc.identifier.urihttps://hdl.handle.net/1911/102703
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
dc.titleDisentangling superconducting and magnetic orders in NaFe1−xNixAs using muon spin rotation
dc.typeJournal article
dc.type.dcmiText
dc.type.publicationpublisher version
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevB.97.224508.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format