A TiO2/FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolution

dc.citation.firstpage4051en_US
dc.citation.issueNumber4en_US
dc.citation.journalTitleACS Nanoen_US
dc.citation.lastpage4059en_US
dc.citation.volumeNumber11en_US
dc.contributor.authorSchipper, Desmond E.en_US
dc.contributor.authorZhao, Zhenhuanen_US
dc.contributor.authorLeitner, Andrew P.en_US
dc.contributor.authorXie, Lixinen_US
dc.contributor.authorQin, Fanen_US
dc.contributor.authorAlam, Md Kamrulen_US
dc.contributor.authorChen, Shuoen_US
dc.contributor.authorWang, Dezhien_US
dc.contributor.authorRen, Zhifengen_US
dc.contributor.authorWang, Zhimingen_US
dc.contributor.authorBao, Jimingen_US
dc.contributor.authorWhitmire, Kenton H.en_US
dc.date.accessioned2017-08-08T19:54:44Zen_US
dc.date.available2017-08-08T19:54:44Zen_US
dc.date.issued2017en_US
dc.description.abstractA variety of catalysts have recently been developed for electrocatalytic oxygen evolution, but very few of them can be readily integrated with semiconducting light absorbers for photoelectrochemical or photocatalytic water splitting. Here, we demonstrate an efficient core/shell photoanode with a highly active oxygen evolution electrocatalyst shell (FeMnP) and semiconductor core (rutile TiO2) for photoelectrochemical oxygen evolution reaction. Metal–organic chemical vapor deposition from a single-source precursor was used to ensure good contact between the FeMnP and the TiO2. The TiO2/FeMnP core/shell photoanode reaches the theoretical photocurrent density for rutile TiO2 of 1.8 mA cm–2 at 1.23 V vs reversible hydrogen electrode under simulated 100 mW cm–2 (1 sun) irradiation. The dramatic enhancement is a result of the synergistic effects of the high oxygen evolution reaction activity of FeMnP (delivering an overpotential of 300 mV with a Tafel slope of 65 mV dec–1 in 1 M KOH) and the conductive interlayer between the surface active sites and semiconductor core which boosts the interfacial charge transfer and photocarrier collection. The facile fabrication of the TiO2/FeMnP core/shell nanorod array photoanode offers a compelling strategy for preparing highly efficient photoelectrochemical solar energy conversion devices.en_US
dc.identifier.citationSchipper, Desmond E., Zhao, Zhenhuan, Leitner, Andrew P., et al.. "A TiO2/FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolution." <i>ACS Nano,</i> 11, no. 4 (2017) American Chemical Society: 4051-4059. https://doi.org/10.1021/acsnano.7b00704.en_US
dc.identifier.digitalManuscript_Revised_2017_03_22v2en_US
dc.identifier.doihttps://doi.org/10.1021/acsnano.7b00704en_US
dc.identifier.urihttps://hdl.handle.net/1911/96626en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by the American Chemical Society.en_US
dc.subject.keywordFeMnPen_US
dc.subject.keywordcore/shell nanoroden_US
dc.subject.keywordelectrocatalysisen_US
dc.subject.keywordmetal−organic chemical vapor depositionen_US
dc.subject.keywordsolar water splittingen_US
dc.subject.keywordtitanium dioxideen_US
dc.titleA TiO2/FeMnP Core/Shell Nanorod Array Photoanode for Efficient Photoelectrochemical Oxygen Evolutionen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Manuscript_Revised_2017.pdf
Size:
2.49 MB
Format:
Adobe Portable Document Format