Opening gaps in the spectrum of strictly ergodic Schrodinger operators

Date
2012
Journal Title
Journal ISSN
Volume Title
Publisher
European Mathematical Society
Abstract

We consider Schrodinger operators with dynamically defined potentials arising from continuous sampling along orbits of strictly ergodic transformations. The Gap Labeling Theorem states that the possible gaps in the spectrum can be canonically labelled by an at most countable set defined purely in terms of the dynamics. Which labels actually appear depends on the choice of the sampling function; the missing labels are said to correspond to collapsed gaps. Here we show that for any collapsed gap, the sampling function may be continuously deformed so that the gap immediately opens. As a corollary, we conclude that for generic sampling functions, all gaps are open. The proof is based on the analysis of continuous SL.2;R/ cocycles, for which we obtain dynamical results of independent interest.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Avila, Artur, Bochi, Jairo and Damanik, David. "Opening gaps in the spectrum of strictly ergodic Schrodinger operators." Journal of the European Mathematical Society, 14, (2012) European Mathematical Society: 61-106. http://dx.doi.org/10.4171/JEMS/296.

Has part(s)
Forms part of
Rights
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Link to license
Citable link to this page