Optical Control of Adaptive Nanoscale Domain Networks

dc.citation.articleNumber2405294en_US
dc.citation.issueNumber35en_US
dc.citation.journalTitleAdvanced Materialsen_US
dc.citation.volumeNumber36en_US
dc.contributor.authorZajac, Marcen_US
dc.contributor.authorZhou, Taoen_US
dc.contributor.authorYang, Tiannanen_US
dc.contributor.authorDas, Sujiten_US
dc.contributor.authorCao, Yueen_US
dc.contributor.authorGuzelturk, Buraken_US
dc.contributor.authorStoica, Vladimiren_US
dc.contributor.authorCherukara, Mathew J.en_US
dc.contributor.authorFreeland, John W.en_US
dc.contributor.authorGopalan, Venkatramanen_US
dc.contributor.authorRamesh, Ramamoorthyen_US
dc.contributor.authorMartin, Lane W.en_US
dc.contributor.authorChen, Long-Qingen_US
dc.contributor.authorHolt, Martin V.en_US
dc.contributor.authorHruszkewycz, Stephan O.en_US
dc.contributor.authorWen, Haidanen_US
dc.contributor.orgRice Advanced Materials Instituteen_US
dc.date.accessioned2024-11-20T15:52:02Zen_US
dc.date.available2024-11-20T15:52:02Zen_US
dc.date.issued2024en_US
dc.description.abstractAdaptive networks can sense and adjust to dynamic environments to optimize their performance. Understanding their nanoscale responses to external stimuli is essential for applications in nanodevices and neuromorphic computing. However, it is challenging to image such responses on the nanoscale with crystallographic sensitivity. Here, the evolution of nanodomain networks in (PbTiO3)n/(SrTiO3)n superlattices (SLs) is directly visualized in real space as the system adapts to ultrafast repetitive optical excitations that emulate controlled neural inputs. The adaptive response allows the system to explore a wealth of metastable states that are previously inaccessible. Their reconfiguration and competition are quantitatively measured by scanning x-ray nanodiffraction as a function of the number of applied pulses, in which crystallographic characteristics are quantitatively assessed by assorted diffraction patterns using unsupervised machine-learning methods. The corresponding domain boundaries and their connectivity are drastically altered by light, holding promise for light-programable nanocircuits in analogy to neuroplasticity. Phase-field simulations elucidate that the reconfiguration of the domain networks is a result of the interplay between photocarriers and transient lattice temperature. The demonstrated optical control scheme and the uncovered nanoscopic insights open opportunities for the remote control of adaptive nanoscale domain networks.en_US
dc.identifier.citationZajac, M., Zhou, T., Yang, T., Das, S., Cao, Y., Guzelturk, B., Stoica, V., Cherukara, M. J., Freeland, J. W., Gopalan, V., Ramesh, R., Martin, L. W., Chen, L.-Q., Holt, M. V., Hruszkewycz, S. O., & Wen, H. (2024). Optical Control of Adaptive Nanoscale Domain Networks. Advanced Materials, 36(35), 2405294. https://doi.org/10.1002/adma.202405294en_US
dc.identifier.digitalOptical-Control-of-Adaptive-Nanoscale-Domain-Networksen_US
dc.identifier.doihttps://doi.org/10.1002/adma.202405294en_US
dc.identifier.urihttps://hdl.handle.net/1911/118045en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subject.keyworddomains and networksen_US
dc.subject.keywordferroelectricsen_US
dc.subject.keywordlight-induced phasesen_US
dc.subject.keywordpolar nanostructuresen_US
dc.subject.keywordx-ray nanoimagingen_US
dc.titleOptical Control of Adaptive Nanoscale Domain Networksen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Optical-Control-of-Adaptive-Nanoscale-Domain-Networks.pdf
Size:
5.37 MB
Format:
Adobe Portable Document Format