A generalized trust region SQP algorithm for equality constrained optimization

Date
2004
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

We introduce and analyze a class of generalized trust region sequential quadratic programming (GTRSQP) algorithms for equality constrained optimization. Unlike in standard trust region SQP (TRSQP) algorithms, the optimization subproblems arising in our GTRSQP algorithm can be generated from models of the objective and constraint functions that are not necessarily based on Taylor approximations. The need for such generalizations is motivated by optimal control problems for which model problems can be generated using, e.g., different discretizations. Several existing TRSQP algorithms are special cases of our GTRSQP algorithm. Our first order global convergence result for the GTRSQP algorithm applied to TRSQP allows one to relax the condition that the so-called tangential step lies in the null-space of the linearized constraints. The application of the GTRSQP algorithm to an optimal control problem governed by Burgers equation is discussed.

Description
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Mathematics, Mechanical engineering
Citation

Wang, Zhen. "A generalized trust region SQP algorithm for equality constrained optimization." (2004) Diss., Rice University. https://hdl.handle.net/1911/18720.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page