RICE UNIVERSITY

A Generalized Trust Region SQP Algorithm for Equality Constrained
Optimization
by
Zhen Wang

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy
APPR D, THESIS COMMIATEE:
Y i

/ ﬁ Heinkenschloss, Chairme{fl/

Associate Professor of Computag#gnal and

';;;“ atic

— - RS
R. Tapia
Noah Harding Professor of Computational
and Applied Mathematics

o Yoy
Y. Zhang

Professor of Computational and Applied
Mathemafics /.

1% %4 %intennﬁllef
Visiting Associate Professor of
Congxﬁg‘ntat@al zgiliifﬁpplied Mathematics
i/ 7 a jg
}{’%; "’%.f\ﬁ% LA

S. Collis

Assistant Professor of Mechanical
Engineering and Materials Science

HOUSTON, TEXAS

NOVEMBER, 2003



UMI Number; 3122561

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3122561
Copyright 2004 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346



Abstract

A Generalized Trust Region SQP Algorithm for Equality

Constrained Optimization

by

Zhen Wang

We introduce and analyze a class of generalized trust region sequential quadratic program-
ming (GTRSQP) algorithms for equality constrained optimization. Unlike in standard trust
region SQP (TRSQP) algorithms, the optimization subproblems arising in our GTRSQP
algorithm can be generated from models of the objective and constraint functions that are
not necessarily based on Taylor approximations. The need for such generalizations is moti-
vated by optimal control problems for which model problems can be generated using, €.g.,
different discretizations.

Several existing TRSQP algorithms are special cases of our GTRSQP algorithm. Our
first order global convergence result for the GTRSQP algorithm applied to TRSQP allows
one to relax the condition that the so-called tangential step lies in the null-space of the

linearized constraints.



iii
The application of the GTRSQP algorithm to an optimal control problem governed by

Burgers equation is discussed.
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Chapter 1

Introduction

We are interested in the solution of a class of large—scale nonlinear programming problems

of the form

min  f(y, u),
st cly.u) =0,

(1.1
wherey € RM u ¢ RVN-M_f . RM xRV"M R c: RMxRY"M - RM M < N. The
problems we are interested in are obtained from discretizations of optimal control, optimal
design or parameter identification problems. In these cases, y is called the (discretized)
state and u represents the (discretized) control/design variables or unknown system param-
eters. The equality constraint ¢(y, ) = 0 is obtained from a discretization of a partial
differential equation and is called the (discretized) state equation.

Most optimization methods for the solution of large-scale problems (1.1) improve a

given approximation of the solution by optimizing a subproblem that is easier to solve than

the original problem. For example, sequential quadratic programming (SQP) methods gen-



erate optimization subproblems from Taylor approximations of the objective and constraint
functions and they require the solution of a large—scale quadratic problem at each iteration.

For our target problems, there are alternative ways to generate optimization subprob-
lems. For example, optimization subproblems can be obtained by using different discretiza-
tions or by using model reduction techniques such as proper orthogonal decomposition.
These subproblems are much smaller than the original problem and, hence, are easier to
solve. They may be better representations of the original problem than the quadratic sub-
problems based on Taylor approximations of the original problem, which are being gener-
ated in SQP methods.

There exist algorithmic frameworks that allow one to use non-Taylor approximation
based models. The ones most closely related to this work are reviewed in the next chapter.
All of these are based on the trust-region framework. The subproblems are subject to a
trust-region constraint, which estimates over which region of the variable space the model
can be trusted to be a suitable approximation of the original problem.

All of the approaches for which convergence analyses are available do not consider

(1.1), but instead tackle the so-called reduced problem
min f (u), 1.2)

possibly with additional equality or inequality constraints on u. In (1.2) f(u) = fy(u), u),
where y(u) is the solution of c(y,u) = 0 for a given u. It is assumed that c(y,u) = 0
has a unique solution for a given u. In all applications of interest, however, the solution

y(u) is not available analytically, but has to be computed numerically. Hence, only an



approximation of y(u) is available. This makes it impossible to verify the assumptions
imposed in the convergence analyses for the existing approaches. We will provide more
details in Chapter 2. Therefore, we tackle (1.1) directly. Since f and c as well as their
derivatives can usually be evaluated easily at a given point (y,u), it is actually possible
to compare function and derivative values of the models used in our approach against the
‘truth’.

In its general form, our algorithm does not depend on the partitioning of the optimiza-
tion variables into y and u, although the structure arising out of such a splitting can and is
being used in concrete implementations. At this point it is sufficient to set = (y, u) and

to consider

min  f(x),

1.3
st c(z)=0. (1)
Given a current approximation z, of the solution of (1.3) and models m} and m¢ of the
Lagrangian corresponding to (1.3) and the constraints in (1.3), we compute a trial iterate
Xk + S by solving
min mL (%) + 8),
st m(2+3) =0, (1.4)
[ Pes] < A

We do not assume that the domain of the models is equal to the domain of the original
functions. In particular, we allow 2,5 € R™:. This is important, since many models are
generated from coarse discretizations of the original problem. The matrix P, € RV*¥r ig
a prolongation that transfers the trial step &, € R from the model domain into R" and
R), € RN 5 a restriction that maps the iterate z;, € R” into the model variable space

]RN’“. ThUS, Cﬁk = kak and S = Pk'§kr-



We use an extension of the trust-region SQP algorithm of [11] to manage the update of
Ty, the update of A, as well as the selection of models. The detailed formulation of the
algorithm will be given in Section 3.2. As in trust-region SQP methods we have to deal
with a possible incompatibility of the equality constraint and the trust-region constraint in
(1.4). We use a composite step strategy. The trial step is the sum of the so-called quasi-
normal step and the tangential step. The quasi-normal step is responsible to move toward
feasibility and the tangential step is responsible to move toward optimality. Compared
to trust-region SQP methods, which use model problems with linear constraints, it may be
more computationally expensive to stay in a set {§ : m§(Zx+3§) = m{} where m{ is given.
Therefore, the definition of the tangential step is more delicate in our context. Our approach
detailed in Section 3.2.2 allows the tangential step to violate the level of model constraint
satisfaction achieved by the quasi-normal step. Specialized to the context of trust-region
SQP methods, this means that the tangential step may not be required to lie in the null-space
of the linearized constraints. The amount by which the tangential step is allowed to violate
the level of model constraint satisfaction achieved by the quasi-normal step depends on the
norm of the model constraints and in the initial phase of the algorithm may be large. This
can even be useful in the case of trust-region SQP methods when linearized constraints are
solved using iterative methods. See also [22], where a different approach is discussed for
trust-region SQP methods.

A first order convergence analysis for our algorithm is presented in Section 3.4. The

convergence analysis of our algorithm is based on a careful adaptation of the convergence



theory in [11]. Among the differences between our setting and that in [11] are our for-
mulation of the predicted reduction and update of the penalty parameter, both of which
are needed because we allow the tangential step to violate the level of model constraint
satisfaction achieved by the quasi-normal step, and the bound for the difference between
predicted and actual reduction, which is due to the fact that we do not use Taylor approxi-
mation based models.

The application of our algorithm to an optimal control problem governed by Burgers
equation is discussed in Chapter 4. In this application, the models are constructed from a

coarsening of the grid.



Chapter 2

Existing Work

In this section we review some of the optimization approaches that have motivated the work

in this thesis. We consider optimization problems of the form

st c(y,u) =0,
e(y,u) = 0, @D
h(y,u) <0,

where the optimization variables z = (y,u) € RY are partitioned into so-called states
y € R and controls/design parameters u € RY"Y. Here f : RY — R, ¢ : RY — RY,
e RY - R, h:RY - R J+ M < N, are sufficiently smooth functions. In several
applications c(y, u) = 0 can be solved uniquely for y given u. Let y(u) denote the function

implicitly defined as the solution of ¢(y, u) = 0. In this case, we can rewrite (2.1) in the

form _
min  f(u),
st elu) =0, (2.2)
h(u) <0,



where
Flu) = flyw),u), &w) = e(y(w),u), hlu) = hy(u),v). (2.3)

We call (2.2) the reduced problem corresponding to (2.1).

Problems of the type (2.1) or (2.2) are typically being solved by iterative algorithms
that use first or second order Taylor approximation models of the objective and constraint
functions, such as quasi-Newton algorithms for unconstrained problems [13] or sequential
quadratic programming (SQP) or interior-point algorithms [26] for constrained problems.
In each iteration of these algorithms the nonlinear problem (2.1) or (2.2) is replaced by
a quadratic problem. The motivation for this replacement is that the quadratic problem
is easier to solve than the original problem, while (locally) retaining the structure of the
original problem.

Recently nonlinear minimization algorithms have been developed that allow the use of
more general, non—Taylor approximation based models. In all these algorithms trust-region
techniques are used to manage the models.

The first such approach, applied to unconstrained problems

o~

min f(u) (2.4)

with twice continuously differentiable f : RY= — R is due to [2] and is called the
Approximation Management Framework (AMF). In each iteration k of the AMF a new

trial iterate u -+ sy is obtained by approximately minimizing a model ] : RV~ — R



subject to a trust-region constraint,

min ﬁi‘,’;(uk + s), 25)
st fIs]l < Ag.
The subproblem (2.5) does not need to be solved exactly. The trial step s, only needs to

satisfy a fraction of Cauchy decrease condition (FCD) for the model ﬁz,{ , which 1s given by
v (ur) — i (g + 55) 2 2| Vi (ug) || min{es [ Vg ()], el

where ¢y, ¢; are positive constants independent of k. The decision about the acceptance
of the trial iterate uy -+ s and the update of the trust-region radius A is performed as
in the well known trust-region algorithms for unconstrained optimization [10]. Global
convergence of the AMF algorithm is proven under the assumption that the models r?zi are

twice continuously differentiable, satisfy
Al (w) = Flw),  Vind(un) = VF(up), (2.6)

for all k € N and || V2] (u, + )| < kg for all s with ||s|| < Ay and all k € N. Under
these assumptions it is shown in [2] that the sequence of iterates generated by the AMF
satisfies

o~

1i]£n inf ||V f(ug)|| = 0.

The assumptions (2.6) on the model have been relaxed in [5]. In [5] the assumptions
(2.6) on the models ﬁm,{ are replaced by the following. Let s;, be the trust-region step. There

exists a positive integer K, such that

(V] (i) = V(i) s
IV sl

<& Vi> K. Q27N



In (2.7), £ € (0,1) is a constant related to parameters in the update formula for the trust-
region radius ;. In [S] the trust-region convergence theories of [7] and {27] are used to
prove that

lim inf IV (ug)|| = 0.

In the numerical examples shown in [5, 15], the condition (2.7) is monitored, but for the
models used in [5, 15] no approach exists yet that allows one to enforce (2.7).

Extensions of the unconstrained AMF to constrained problems have been explored in
[3], [4]. The AMF in [4] is based on the augmented Lagrangian method [9]. The problem

to be solved is of the form

min f(U),
st. elu)=0
Up < UK Uy

The associated augmented Lagrangian is
i’y T, 1 —~ 9
D(u, A, p) = f(u) + A €(u) + Q—Mlie(u)ll :

In the kth iteration of the AMF in [4] a subproblem of the type

min ] (uy + ) + N g (ug + ) + 5|75 (uy + 5)|1%,

st S up+ 8 < Uy,
Isll < Aw

is solved, where 771{ and 7§, are models of f and ¢, respectively. The models are assumed

to satisfy (2.6) and
mi(ux) = elug), Ving (ux) = Ve(ux). (2.8)

In [3], an AMF based on the SI{; QP method of [16] has been discussed for the solution
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of (2.2). In the kth iteration of the AMF an approximation
my (g + 8, 0%) = g (we + 8) + o8| (ux + 8) |1 + ol max{0, M (we + )1
of the /; penalty function
O(uy, + s, 0k) = f(uh + 8) + oxlle(ug + s)|l1 + ol max{O,ﬁ(uk + ) Hls-

is minimized subject to a trust-region constraint. The models are assumed to satisfy (2.6),

(2.8) and
P () = h(ug), Vit (u) = h(ug). (2.9)

Another AMF is introduced in [1]. This approach is based on a class of multilevel

methods for constrained optimization. For a problem of the form

min  f(u),
st elu) =0,

the trial step s, is computed as the sum of two substeps. The first substep s, is obtained by

approximately minimizing a model of constraints my{, within a trust region,

min  mé (v + s),
st sl < adyg,

where o € (0,1). The second substep s? is computed by approximately minimizing the

model mi: of the objective function in the null-space of the linearized model constraints
and subject to a trust-region. The subproblem for computing s is given by

min ] (ug + 5+ ),
st Vmg(ug)'s =0, (2.10)

Isll < /A% = llskl*.
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It is assumed that the model constraints satisfy (2.8) and that the model of the objective

function obeys
T'ﬁ,’:(uk +81) = f(uk + 81), Vﬁzi(uk +81) = f(uk + 51). 2.1D

The 5 penalty function is used as a merit function. The scheme for the update of the penalty
parameter is an extension of the updating scheme in [14]. Decision about acceptance of the
trial step and update of trust region radius is performed as in [1].

In[1, 3, 4], it is noted that the conditions (2.6), (2.8) and (2.9) can be enforced using the

so—called B-correction due to [8]. Given a true function § : RV —¥

— R and a model m]
of g, which is not required to satisfy mj (uy) = g(ug) or Vini (ur) = Vg(ux), the model is

corrected as follows. One defines

By =

g (u)
and

Be(u) = Blug) + VB (ug) ¥ (u — uy).

The corrected model of g is given by
(M) () = By(u)ymi(u).

Clearly, (m])%(ug) = g(us) and V(m])°(ux) = Vg(ug).
One difficulty that arises in the above mentioned approaches is that the implicitly de-
fined function y(u) often cannot be evaluated exactly. We discuss this for the unconstrained

case (2.4). Since an analytic solution of ¢(y(u), v) = 0 is usually unavailable, one has to



12
use iterative techniques to compute an approximation § of y(u). Typically ¢ only satisfy
(g, w)|| < tol. (2.12)
where tol,. is a user specified constant. Applying Taylor series, we obtain
c(@,u) — ey, u) = ¢ (y + Tely — 1), u)(y — 9),
where ¢, is the partial Jacobian of ¢ with respect to y. If ¢, (y + 7.(y — ¥), u) is invertible,
it follows that

”y - 27“ g "{'r_:tOIcv

where k. is an upper bound for ||, (y + 7.(y — %), u)||. It is typically difficult to obtain a

good estimate for .. The bound for ||y — 7| imply

f(y,w) = f@.w)] < IV fly+ 7y — 7)) v =7l

< kjtolg, (2.13)

where k7 = K|V, f(y + 7¢(y — ¥), u)|, and

IV fly(w),uw) = Vi@l < [IVyfly+7ly = 0), W)l lly(w) — 7l

< kytol, (2.14)

where k, = k||Vf(y + 74(y — 7),u)||. Again, it is typically difficult to obtain good
estimates for the norms of the gradients and Hessians of f. From (2.13) and (2.14) we
observe that although we can make the error between the computed gradient and true gra-

dient smaller by enforcing a smaller tolerance tol,, the actual errors | f(y(u), v) — f(7, u)]
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and ||V f(y(u),u) — V f(7,u)] are difficult to determine. Hence, it is often impossible to
enforce (2.7).

In the unconstrained case (2.4) it is possible to adapt an idea of [22, p. 291] and replace
(2.7) by

IV (u) = V[ (we)|] < Cmin{|| VAL, Ak} VE > K. (2.15)

In (2.15), ¢ > 0 is a constant independent of k. In contrast to £ in (2.7), which is smaller
than one, there is no restriction on the size of (. Hence, it may be possible to absorb all
unknown bounds K., K¢, kg 1Bt0 (.

The approach taken in this thesis includes y as an optimization variable and instead of

(2.4) takes

min  f(y,u),
st e(y,u) =0

directly. The objective and the constraint functions are replaced by models. In many
practical applications, the models are obtained from reduced bases approaches (see, e.g.,
[15, 23, 24]) or from coarse discretizations of the original problem (see e.g., [6]). In these
cases, the dimension of the variables the models act on are different from the dimension [V
of the original variables. This is allowed in our approach. Our approach is a generalization
of the trust-region SQP (TRSQP) method in [11]. In contrast to the algorithm in [11] the
subproblems in our approach are nonlinear programming problems in which objective and
the constraint functions are models of the original objective and the constraint functions.
These models should be such that the subproblems are easier to solve than the original

problem. As was stated before, the variable space for the model functions can be different
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than that for the original problem. We refer to our algorithms as generalized trust-region
SQP (GTRSQP) algorithms, although the subproblems are not necessarily quadratic. Of
the previously mentioned papers, our approach is most closely related to [1]. However,
there are important differences between the algorithm in [1] and our algorithm. Unlike [1},
we allow the variable space for the model functions to be different than those for the origi-
nal problem. In addition, our tangential subproblem differs from that in [1]. The constraints
in the tangential subproblem of [1] are linear and are obtained from the linearization of the
constraint model. Our tangential subproblem is based on the full constraint model. Thus, if
the constraint model is a good approximation of the actual constraints and inexpensive to
work with, our approach has the potential to make better use of the model constraint. These
two differences between the approach in [1] and our approach, also generate differences in
other parts of the algorithms. We provide a first order convergence result, which generalizes
that of [11]. Even if the models in our algorithm are chosen to be a quadratic approximation
of the Lagrangian and a linearization of the constraints, respectively, i.e., our algorithm is
a trust-region SQP algorithm, our first order global convergence result allows one to relax
the condition in [ 11] that the so-called tangential step lies in the null-space of the linearized

constraints. This is useful when the linearized constraints are solved by iterative methods.



Chapter 3

A Generalized Trust-Region SQP

Algorithm

3.1 Introduction

Our generalized trust-region SQP (GTRSQP) method is a generalization of the trust-region
SQP (TRSQP) method in [11]. In our generalization the subproblem may be nonlinear
programming problems, obtained from ‘simpler’ models of the original problem. Among
the AMF reviewed in the previous chapter, [1] seems most closely related to our approach.
However, unlike [1], we allow the variable space for the model functions to be different
than those for the original problem. In addition, our tangential subproblem differs from
that in [1]. The constraints in the tangential subproblem of [1] are linear and are obtained

from the linearization of the constraint model (see (2.10)). Our tangential subproblem is

15
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based on the full constraint model (see (3.7)). Thus, if the constraint model is a good
approximation of the actual constraints and inexpensive to work with, our approach has the
potential to make better use of the model constraint. These two differences between the
approach in [1] and our approach, also generate difference in other parts of the algorithms.

Throughout this chapter, || - || denotes the 2-vector norm or the corresponding operator

norm.

3.2 Formulation of the Algorithm

We consider problems of the form

min f(z), o
st cfx) =0, '
wherez € RV, f:RY - R,c:RY - R¥ M < N.

The Lagrangian associated with problem (3.1) is the function
(2, \) = f(z) + Xelz),

where A € RM is the Lagrange multiplier.

We compute a solution of (3.1) by solving a sequence of model problems. Atiteration k,
we are given an approximation x, of a local solution z.. of (3.1) and models m}, : R" — R
and m§ : R — RMk of | and ¢, respectively. We allow Ny, % N and My # M. We use a
restriction

R - RY — R
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to map the current iterate xy, into 2, = Rz and we use a prolongation
P, :RM RV

to map a trial step §j, in the model variable space into a trial step s, = P35, in the original
variable space.
We assume that m}, (25, +3§) is a model of I(z + Pj,8, Ay ) for small § and that mf (2 +35)

is a model of c¢(xy + P.$§) for small §. We compute a trial step by approximately solving

min mi (3 + 3),
st mi(Zy +3) =0, (3.2)
1Pe3]] < Ay,

where A\, is the trust-region radius in iteration k. The constraints in (3.2) can be incompat-
ible. Therefore we will use a composite step algorithm. The trial step 5, is the sum of two
substeps. The first substep is called the quasi-normal step 3} and it is responsible to move
towards feasibility. The second substep is called the tangential step 5% and it is respon-
sible to move towards optimality while approximately maintaining the model feasibility
achieved by the quasi-normal step.

Progress of the algorithm is monitored using the augmented Lagrangian merit function
L(z, A p) = f(z) + Ne(z) + gc(x)Tc(a:), p>0.
We may use a restriction
R):RY — RMx
to map the Lagrange multiplier estimate ), for the original problem (3.1) into a Lagrange

multiphier estimate M = R\, for the model problem (3.2). Similarly, a prolongation

P} : R — RY
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is used to map the Lagrange multiplier estimate Ay, for the model problem (3.2) into a

Lagrange multiplier estimate A, = P,;\)A\k for the original problem (3.1).

3.2.1 The Quasi-Normal Step

The subproblem for the computation of the quasi-normal substep 5}, is given by

min [ (d + 8]
s.t. “Pk§n“ S CYnAk,

(3.3)
where 0 < a" < 1 is some constant. The quasi-normal substep 3} is not to required to
solve (3.3) exactly. It is only required to satisfy the following three conditions. First, 5}, is

required to satisfy

1Pe83l < a"Ag. (3.4)

The second condition on the quasi-normal substep is a sufficient decrease condition which

is given by
ImE (@) — Imi(@e + SO = cdllmf (@) | min{Smi ()], 0" A}, (B.5)

where ¢] and ¢ are positive constants, which are independent of k. The third condition

imposed on 5}, is
181 < eslmi(Ep)ll, (3.6)

where ¢} > 0 is independent of k.
Additional details on the actual computation of the quasi-normal step will be given in

Section 3.6.
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3.2.2 The Tangential Step

The tangential subproblem is related to

min mi (%) + 87 + §),
st m(Zr + 8% + 8Y) = mi (% + 8}, (3.7)
1Pe(85 + 31| < A

The tangential step is responsible to move toward optimality. To measure progress in opti-

mality, we typically use
X (@i + 37) = 123 (x + 80)T Vg (0 + SN (3.8)

where Zg(#; + §}) is a matrix whose columns span the null-space of Vmj (&, + §3)7,
the Jacobian of m§. If the Jacobian Vm§(£)? of m§ at & has full rank, we can compute

I — Vm§(2)[Vmi(2)TVmE () Vmg(2)T. Since
(I = Vmi(2)[Vmi(£)TVmi (2)]7 Vmg(2)") Vmi(2) = 0,

the columns of the matrix (I — Vmg(2)[Vmg (i)Tvm;(sﬁ)]—lvmg(i-)T)T span the null

space of V¢ (%)T. Thus, if the Jacobian of mj at £ has full rank, we can use
cfa Cra T [ cra - Cra T
Zg(&x) = (I — V() [Vmg(2x) T Vmg (8)] 7 Vmg (86)") (3.9)

However, for specific applications, including optimal control problems other representa-
tions of the null-space representor Z¢ (%) are favorable (see, e.g., [12, 25] and Section 4.3).
Moreover, depending on the specific algorithm used to compute an approximate solution
of (3.7) quantities other than (3.8) may have to be used to measure progress in optimality.

For example, filter SQP methods use different quantities to measure progress in optimality,
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see, e.g., [10]. Our global convergence proof is largely independent of the specific quantity
used to measure progress in optimality. Therefore, we simply denote such a quantity by
M (& + &7). Following [10] we call 3’ a first order criticality measure.

The tangential step & is not to required to solve (3.7) exactly. We require that the

tangential step &t satisfies three conditions. First, the tangential step is required to satisf’
g P Si g P q y

1Pe(85 + Sl < A (3.10)
The second requirement is that
lmi (B + 8% + 31 < Vimllmi (@ + SN, (.11
where
pe = 1 if|lmi(E + &)l =0,

Img @)|* + lImi (& + SN
2[lmi (2% + 5112

i else. (3.12)

This means, if |m$ (2 + 81| > 0 we do not insist that the equality constraint in (3.7) is
satisfied. We only require that the final tangential step iterate §; maintains an approximate
level of feasibility for the model constraints mj(Z) = 0 achieved by the quasi—normal step
8p. Since ||m§(&x + 57| < |mi(2e)||, we have pp > 1.

The third requirement on §, is

mé(ﬁ:k +87) — mk(Zy + &) + 5%)

> Axi (& + 8p) min {chxy (& + 87), (1 — ") A} (3.13)

where ¢!, ¢ > 0 are constants independent of k.
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We have stated that the tangential subproblem is related to (3.7). The constraints in
(3.7) are compatible (8 = 0 is feasible), but the equality constraint is somewhat artificial.
If it is possible to obtain a tangential step that meets the three requirements stated above and
improves model feasibility, then it is feasible to take this step. Therefore a better statement

of the tangential subproblem may be
min  mk (2 + 57 + 8Y),
st mp(Zk+ 5, + 85 < klmg(E + 33)1,
(& + S+ 8Y) 2 =/l (@ + S,
12 (35 + 35 < A

where |m¢ (%, + §7)| denotes the vector whose ith component is |(mf(Zx + 8}))il, i =

(3.14)

1, , M.

Clearly, any point §* that is feasible for (3.7) is also feasible for (3.14). Moreover
any point §' that is feasible for (3.14) satisfies (3.10) and (3.11). Since the tangential step
only needs to satisfy (3.10), (3.11), (3.13) a variety of sub-optimization problems can be
formulated whose approximate solution satisfies the tangential step conditions.

Additional details on the actual computation of the tangential step will be given in

Section 3.7.

3.2.3 Evaluation of the Trial Step and Update of the Trust-Region

Radius

The decision about acceptance of the step and update of trust region radius is based on the

ratio of actual reduction given by

Ared(sg, pr) = Lz, A pr) — L(2k + Sy Akt ox) (3.15)
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and predicted reduction given by

Predy(su,pe) = k() + EElimp(@0]” — mi @ + 80)

—(Rsr = M) TmE (@ + ) — 2o mg (@ + 807 (3.16)
2

LetO<m <me <1, <1, > 1, and compute the ratio

. Ared(s, pi)
e Predy (31, o)

The trust-region radius is updated as follows

o |[skll if r, < my,
Ay = ¢ max{Ay, Anin} if g <7 <o, (3.17)
min{ A e, max{aaAg, Apin b} if 76 > 12,

where A,,,;,, is the lower bound on the trust region radius and A,,,, is an upper bound.

3.2.4 Updating the Lagrange Multipliers

The methods for updating the Lagrange multipliers are left unspecified at this point. We
only require the Lagrange multipliers to be bounded, i.e., we require the existence of
K, k5" > 0 such that

IXell < kay 1]l < &7 VE EN.

3.2.5 Updating the Penalty Parameters

The penalty parameter is updated to ensure that the predicted reduction in the merit function

is positive at each iteration. We modify an update formula given in [14]. It ensures that
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the merit function is predicted to decrease at each iteration by at least a fraction of Cauchy

decrease in the model of the constraint. In our algorithm we allow
mi (&5 + 3x) 7 my,(Ex + 3})

and therefore the update of the penalty parameter is a little more delicate in our case.

At the kth iterate z;, after s, and §, have been computed, evaluate

Predy (3, pi-1) = mi(e) + EHImE @07 —mi @+ 5)
= (R = M) (4 85) — P i e+ 85
If
Predy (S, pr1) = P Imi @)l — lImi (@ + DI,

then set g, = pg—1, else set

[k (& + 36) + (s — M) mi (B + 81) — ml(84)]
Mg (E)lI? — [Img (& + )12

3
pr =B+

where G > 0.
In Lemmas 3.4.3 and 3.4.4 we will show that with this penalty parameter update the

predicted reduction is ‘sufficiently’ positive.

3.2.6 Statement of the GTRSQP Algorithm

We present a complete description of our generalized trust—region SQP algorithm.

Algorithm 3.2.1 1. Initialization. Given :60,)\075\0. Choose Apin, Dmax > 0, Ay €
Apin, Amax, 0 < < < Loy <lag>18>0and ey > 0. Setpy =1

and k = 0.
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. Compute the first order criticality measure x(xy) and the constraint residual c(xy).

I xe(ze) + lle(ze)|| < €ro then terminate.

. Generate models mic, mg, a restriction Ry, and a prolongation Py. Set & = Ryx

and compute Ay
. Compute a trial step

a. Compute a quasi-normal step 5}, that satisfies (3.4), (3.5) and (3.6). Set s}, =
P37,
b. Compute a tangential step 3}, that satisfies (3.10), (3.11) and (3.13).

c. Set sy = Pk(gl?, +- 32)
. Update the Lagrange multipliers Mgy 1. 5\;”1.

. Update the penalty parameter. Compute

Pr-1

T”mi(ﬁ?k)HQ — mi(dy + &)

Predy(8g, pr-1) = mi(dx) +

(s — AT (@ + &) — X
If
~ Pr-1 cra c o ~n
Predy (3, pr-1) = 22 mi (@0l = I 2 + DI,
then set py, = pi—1, else set

(ML (3 + &) + Qs — M) mg (8 + &) — mb(85)]
lme(Z)l1? — llmyg (2 + S

8
pe =0+



7. Evaluate the trial step s,. Compute
Ared(sy, pr) = Lz, Me; pr) — L(T + Sk, A1 P1)

and

. Ared(sg, pr)

= Pred(sy, pr)

Set
sl ifry <m,
Ap =< max{Ay, Npin } ifn <7, <o,
min{ Apmes, max{alg, Apint}t i re 2 N2
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Ifry > m, then set Tpyy = Ty, + Sk, Dpypr = A, k= k + 1 and goto 2, else goto 4.

We use the parameters

= 0017772 =0.9,00 =05,a; =2, Amm = 10‘5: ZXmaa: = 105

For convenience of the reader, we collect the notations most frequently used in the

GTRSQP algorithm in Table 3.1.



Table 3.1: Notations used in the GTRSQP algorithm

f(z) Objective function
c(z) Constraint function
I(z,A) | Lagrange function
L(z, X\; p) | Augmented Lagrange function
Ve(z)T | Jacobian of the constraint
Xk Criticality measure
m! (Z) | Objective function for the model at the kth iteration
m (%) | Constraint function for the model in the kth iteration
Vm§ (%)Y | Jacobian of the model constraint in the kth iteration
Z¢(#) | Matrix whose columns span the null space of Vmg (2)7
XA Criticality measure for the model
Py Prolongation matrix for the iterate in iteration k
Ry Restriction matrix for the iterate in iteration &
P} Prolongation matrix for the Lagrange multiplier in iteration k
R} Restriction matrix for the Lagrange multiplier in iteration k
Ay Trust region radius in iteration k&
Ak Lagrange multiplier estimate in iteration k
N Lagrange multiplier estimate for the model in iteration £
Pk Penalty parameter in iteration &
Tk kth iterate
Sk Trial step in iteration k, s, = s} + s},
sy Quasi-normal substep in iteration k&
s, Tangential substep in iteration k
g = Ry
Sk Trial step for the model in iteration k
N Quasi-normal substep for the model in iteration k, sy = IS}

Tangential substep for the model in iteration k, s}, = P35},

26
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3.3 Comparison of GTRSQP and TRSQP
The trust-region SQP (TRSQP) method in [11] is a special case of our GTRSQP algorithm
if weset N, = N, My = M, R, = I, P, = I and if we use the models
mé(xy +38) = clzy) + Velz)''s, (3.18)
1
m%(a:k -+ 8) = l(ﬂfk, )\k) + Vxl(x;w /\k)TS -+ ESTVil(Ik, )\k)S (319)

The quasi-normal step subproblem (3.3) becomes the familiar subproblem

min ||e(zx) + Ve(zg)Ts"|,

st Is"]] € a"Ag, 3-20)

Our conditions (3.4), (3.5), (3.6) become the conditions

l[sill < ™Ay,

le@i)lI? = lle(zx) + Ve(@i)'s"I* > cille(zr) | min {c5llc(zp)ll o Ax},

and

szl < ealic(zi) ],

which are precisely the condition imposed on the quasi-normal step in the TRSQP of [11].
With the choice (3.19), the tangential subproblem (3.7) becomes

min  VIl(zr, Ap)L (5] + s%) + %(S',; + sHTHy(sh + %)

s.t. Vck(:z:k)Tst =0, (3.21)
Hsz + St” < Ak

The problem (3.21) coincides with the tangential subproblem in {11].
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An important difference between [11] and our algorithm is that we do not require the

equality constraint in (3.7) to hold exactly. Instead, we only require that

lear) + Ve(z) (s + sl < vARllelar) + Ve(z) syl (3.22)

see (3.11), which implies

IVe(@n) skl < V14 palle(ar) + Velze) ' sill

In many applications, see, e.g., [12, 22], the enforcement of the condition Ver(zp)Tst =0
requires the solution of large scale linear systems. If these system solutions are performed
iteratively, then Vg (zx)7 st = 0 cannot be maintained exactly.

For the models (3.18), (3.19) our requirements (3.10), (3.13) on the tangential step are
identical to the requirements on the tangential step in [11], if we use x 2 (x5 + s) as defined

in (3.8). In particular, (3.13) becomes

Vomk (zy + s+ st) — V,mi(z, + s})

> dxpl (e + sp) min {Sxa! (2 + 57), (1 — a")Ar} (3.23)
Our predicted reduction (3.16) becomes

Predy(sip) = Waon ) + Elleta)l?
~Uzp, M) = Vil (zi, M) s — £ Val(zy, M)

— (gt = A7 (elw) + Velan)Tse) = E-flefan) + Vela) sl

which is identical to the predicted reduction in [11].
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Our updating strategy for the penalty parameter is slightly different from that in [11].

We require
Predy(s, pr) = & (lle(@y)]l? = lle(ws) + Ve()st]?)
instead of

Predi(se, pr) = == (le@a)|? — fle(zx) + Velar) sell*)

=~ |2

(see [11], where also Ve(zr) s, = Ve(a,)T s? holds). This technical difference is due to
k

our relaxation (3.11) of the tangential subproblem equality constraints.

3.4 Global Convergence Theory

The convergence analysis of our algorithm is based on a careful extension of the conver-
gence theory in [11].

To simplify the presentation of algorithm, we only increase the iteration count £ when
the iteration is successful. In the analysis that follows we need to show some properties
of every trial step, not just the successful steps §;. Therefore, let Ai, é,’c and p,i denote the
quantities set by the main algorithm as it searches for an acceptable step. Thus, Al = A
at the first trial step of kth iteration, and &) and p{ are computed in steps 4 and 6 during the
first trial iteration in step k. If the trial step §§f is acceptable, then §; = ,§fc P = p{, and Ai

is updated to become Aj1.
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3.4.1 Assumptions on the Problem and Models

Let & < RY be an open subset such that zy, z + s € ) for all £ € N. We make the

following assumptions on the original problem.
Al. The functions f, ¢ are twice continuously differentiable in (1.

A2. The functions f,Vf,V?f.c,Vc?, V3¢, i = 1,--- ,m are bounded in {2 and the

sequence { A} are bounded. i.e., there exist constants &, k%, KL, ky > 0 such that

IVe@)'ll < kg,
IVil(z, )l < K,

forall z € 2 and

ARl < K,
forall k e N.

Let Qk C R™r be open, convex subsets such that Z, & + 8 € Qk for all iterations

k € N. We make the following assumptions on the model problems.

AMI. The functions m}, m§ are twice continuously differentiable in .



AM?2.

AM3,

AMA4.

There exist constants «},, K%, k5,

m? s K

31

KS, Ky, kG, K > 0 such that

Imi@) < &,

lme@) < K,

IVmi @)l <«

IVmi (@)l < s,

IV mi () < K,

IV2(m)s(®))] < wy, i=1,---, My
forall 7 € () and all k € N, and

IAell < K5

forall k € N.

The matrices Py, k£ € N, have full rank N, and there exist a positive constant xg,

such that || P& > k,||2]| for all £ € RY

and forall £ € N.

Let sp = P8y, £x = Rizi. There exist Kupr1, Kubra, Kuprs > 0 and v € (0, 1] such

that

|Ared(sy, p) — Predi (i, p)|

S K/ulrrl(Ak)ﬁ/HSk“ + K/ubr?ﬂ(Akf)’Y

for all p > 0, Ay > 0 and all trial steps 5.

skl + Kuprs (k) lmi (Z2) skl
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AMS. Let , = Ryxy. There exists a constant vy, > 0 independent of % such that

X(@) < Y (E5)

forallk € N.

AMS6. Let £, = Ryx). There exists a constant 7y, > 0 independent of k such that

le(zi)ll < vellmi(@n)ll
forall £ ¢ N.

In the standard trust-region SQP method, Assumption AM4 with v = 1 follows from Al,
A2 and an application of the Taylor expansion, see, e.g., [11]. In our case, the models must
be chosen properly to satisfy AM4 (as well as AMS, AM6) and the relaxation of AM4 to
allow «y € (0, 1] is useful.

We will show later (see Lemma 3.4.1) that the following conditions imply AM4. The
conditions AM7-AMI10 will be useful in the context of the class of applications discussed

in Chapter 4.

AM7. Let 2 = Rypap. We assume Plc(xy) = m§(3), (PR Velzg)' Pe = Vmg (&)

forall k ¢ N,

AMS. Let &, = Rpzi. There exist constants ¢; > 0 and v € (0, 1] independent of k such

that
{§{ (PTVe(ay) V() Pr — Vmg (&) Vi (x)") §k| < e (AR5

for all k£ € N and all trial steps 3.
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AMSY. Let #;, = Rz There exist constants ¢; > 0 and y € (0, 1] independent of k such
that
c(ze) Velze)' Pudr — mi (&) Vmg(2)" 35| < co( ) lmi (@) 154
for all k € N and all trial steps 5.
AMI10. Let #, = Ryzi. There exist constants c3 > 0 and vy € (0, 1] independent of k such

that

IV ab(@h M) Pidy, = Vi (@) 8ell < cs(A5)7 13|
for all ¥ € N and all trial steps 5.

With the SQP models specified in Section 3.3, the assumptions AM7-AMI10 are satis-

fied with v = 1.

Lemma 3.4.1 If Assumptions Al, A2, AMI-AM3 and AM7-AM10 hold and if Ajy1 — A =

P,;\(S\kﬂ — ik), then AM4 is satisfied.

Proof: Throughout the proof, we let s, = Fj5%.
The definitions of Ared(sy, p) and Predy (8, p) imply
Ared(sg, p) — Predi(3x, p)
= l(.’Ek, )\k) — l(:l)k -+ 8, Ak) - ()\k-H - Ak)TC@Sk + Sk)

+5 (fle(@)* = ez + si)lI?)

oo

—mk(34) + mL(Zr + 85) + s — M) mE(Ex + 81)

P cfs 2 Cfp $O1?
=L (g @) P — Imi e + $0)17) -
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Applying Taylor expansion', it follows that

|Ared(sk, p) — Predy (5, p)|
= l —~ Vol(@i, M) s — 385 Val{g + E15k, Ax) Sk

(s — M) (c(zx) + Velze) sk + 25k Ve(zy + asi)sk)
=2 (2e(e0)" Velwr) s+ elwn) stV elai + Eosi)s
V(e sy + 55T Veelon + Eos)sell?)
V()7 85 + 2(31)T VMl (B + E35%) 8k
1 — )T (Mg (En) + Ymg (@) 8k + 2(80)T VMg (Ze + Eadk)5k)
+-g (zm;;(azk)Tvm;;(aek)Tgk ()T (80)T VG (B + ) B

T ) S+ 33 VI (B + Eas)l?) |

'Here and in the following we use sgVQC(:L‘;c + fsk)sk as a short hand for the vector function whose ith
component function is s V2¢;(zx-+&; 5k )5k where & is the ith element of € € R™ and 8} V2mS (£ +£51) 8k
p k k k
for the vector function whose ith component function is S’;fVQ (m$); (&5 + €5k )3k, where &; is the ith element

of ¢ € RMx
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Hence,

|Ared(sy, p) — Predi(8k, p)|
< | Val(@r, M) sk — Vg (26) 35
+3 |sE V2 (g + Eusky Me)se — (81) VP (B + E38k) 31
+ \(Awl = )T () + Velzn)Tsi) — Gt — AT (mi(d) + Vm(é(i’k)Tgk)‘

s — M) sEV2e(ag + Easn) s — er — M)T (Be) VM (Ex + €485) 3

1
T3

+p Ic(zck)TVc(ajk)Tsk - m,ﬁ(i"k)TVm;(i"A)Ték‘
+g' IC($k>TS£VQC($k -+ fsz)Sk - mi(:ﬁk)T(ék)Tvsz(:z?k + §4§k)§k|
+—§H1Vc(:rk)Tsk + %vazc(l’k + 525k)5k”2

—\Vms (a)! 8 + %(é?k)!'vzmz(:%k + $4§k).§k[[2|.
Using Assumptions A2, AM2, the above inequality yields

| Ared(si, p) — Predy(3x, p)|
< | Val(on, M) sk — Vi (@) 36] + 5 (Rllsill? + wl130)
| = )" (el) + Ve@)se) = (i = 2T (@) + V(@) 5|
+ (kakgllsnl® + ml54I7) -+ plelan) TV e(ae) s — mi (@) V(i) 5
+2 (Ksaleta)llsn | + il mi @ S + IV e(z) sl — [ Vmi ()5

+hgkfllsell® + morg 186l + (ki) sl + (ﬁ%)211§k1l4)-
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Assumption AM3 implies that || 3| < k—lz;llskll Therefore

|Ared(sy, p) — Predi(3k, p)]
[Val(i, M) sk — Vil (81) 86| + p |c(mn) " Vel(zi) sk — mi (&) Vimg (@) 3]
+ ‘(/\k+1 — ) (clan) + Ve(@r) si) — ert — AT (m(Ex) + sz(-%k)Tgk)l
+5 (k le@a) N sell® + w5 lmi (@ M36l® + [ Ve(er) T skll® = [Vmi (@07 50?)
+1 (Kl + ~lyryy” + 2kak + 263 K555, ) skl

£ (kg + mipiamy,?) sl + (ki) + (i) ) sl ]

Defining

= %(kly + lil'HKl;Q + 2knkg + 2% ”Hml:r?)

and

Ty = kK + /{f,/{%ml;s, = (k%)* + (KH)%[JI

with (A1 — Ax) = PR(Apps — M) and s;, = Py, yield

|red(sy p) — Predi(s,p)
|(P,3 Val(z ) — Vmk(a)) §k|

+p | (c(zn)" Ve(ar)T Pe = mi(&) Vg (86)") 8]

+ |(2\k+l — ) (BN elmy) — mé(ax) — (P Velmy)" B — Vg (3)7) sk]|

+-g— (kEHC(%)H lsill + g llmg (@) 15

B8 sl

+7'1H$kl|2+ H kP + 5
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Assumptions AM7-AM10 give
|Ared(sg, p) — Predi(3k, p)|
< (D) 18kl + peallmi ()l (Ax) 13k

'%<(%%+gﬂW@@MWw“ww$wmeﬁ

T ; T30
raflsell? + Sl + sl

Assumption AM4 now follows with K1 = 71 -+ K-l—;Cg, Kubra = %(cmlf + T2l maw +

T3A2 ), and Kyys = Cof ki + K§70/2 + K5 /(257 0

3.4.2 Properties of Predicted Reduction

In this section, the properties of the predicted decrease in the merit function obtained by
the trial step is discussed.
The first lemma is an easy consequence of Assumptions AM2 and AM4 and the fact

that ||si]| < Ag.
Lemma 3.4.2 If Assumptions AM2 and AM4 hold, then for any p > 1, we have

| Ared(sy,, p) — Predi(3r, p)| < Kuprp(Ak)7 ISkl < BuprpAillsel]”, (3.24)
for all trial steps &, where s, = Pp3;, and Kype = Kupr1 + Kubr2Dmaz + Kubra K

The following two lemmas are related to the updating strategy given by Algo-

rithm 3.2.1. This strategy ensures that the merit function is predicted to decrease by a
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fraction of Cauchy decrease in the model constraint at each iteration.

Lemma 3.4.3 For any p > 0, we have

Predk(%,p) > Predk(éi;,p)
= omi(8) — mi (e + 5L) — (M, — M) mg (8 + )

A2 (i@l — e+ SEIP) (3.25)

Proof: The predicted reduction can be rewritten as

Predy(&,p) = mj(d) + g (g (@)l1® = pellmi (B + 37)]1%)
+£ (uelimi @+ I — i@+ 3)1P)
—mb (@ + 8) — (Mg — X)) mE(d + &) (3.26)
By (3.11) we have
pellm (@ + S = (@ + 3D > 0 (3.27)
and the definition (3.12) of y; implies

Ime@l® — mellmi @ + NI 2 § (Img @l — Imi (@ + 8)17) . (328)

The desired inequality (3.25) is obtained if we apply (3.27), (3.28) to (3.26). O

Lemma 3.4.4 For the penalty parameter determined in step 6 of Algorithm 3.2.1, the pre-

dicted reduction satisfies

Predu(, o) 2 % (Imi @I ~ Im(e+ 5)1P). (3.29)
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Proof: This inequality follows from the rule for the update of the penalty parameter, step

6 of Algorithm 3.2.1, and Lemma 3.4.3. ]

The penalty parameter is increased only if the predicted reduction does not achieve a
fraction of decrease in the mode] constraint. The following lemmas show that the predicted
reduction is independent of penalty parameter py as long as the iterate 2y, is close enough

to the feasible region.

Lemma 3.4.5 Under Assumptions AM1, AM2 there exist a constant® ry, > 0 independent

of k such that
mi (&) — mi (8 + 517 — (Mg = M) miE (@ + 8]) = —muglmi(@0)].  (3.30)
Proof: The boundedness of 5\% 41 and (3.11) imply

Mk (Zx) — mb (@ + 87) — (Mg — X)) Tmi (3 + 8L)

> = Vi@ + &SNS = Verg (Imi@oll + Img @, + 571
> |l |~ eUVR(2ImE @) + [ Vmg (@ + &5 11571
> —(ry + RYRGV2)187 ) = 2V 265 ImE (),

where &1, &, € [0, 1]. The last inequality and (3.6) imply the desired estimate if we set
kg = (kb + KPEEV2)c) + 2V265.

O

%kyq stands for Lower bound for difference between Lagrangian and Lagrangian on Quasi-normal step.
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Lemma 3.4.6 Let Assumptions AMI, AM2 be satisfied. For any p > 0, the predicted

reduction obeys

Predy (&L, p) Ig;e/dk(é',i, )
chixd! (&x + 877) min{chxi! (2x + 877), (1 — ") AL} (3.31)

¢ P ¢ ColA An,j
— kg [mip(ze)ll + 7 (Imi e = tmi (2 + 82)I17)

AVARLY,

where Ky, is given in Lemma 3.4.5.

Proof: From lemma 3.4.3, we have

z () —mi (2 + 3127) - (’iiﬂ - j‘i)Tmi(ﬂA?k + 3@

P cfa cia PN AT
L (I @l = i e+ 577)1P)

Fml (& + 877) — mh (& + 8L). (3.33)

The inequality (3.31) is obtained if we apply (3.30) and (3.13) to (3.32). O

Lemma 3.4.7 Let Assumptions AMI1, AM2 hold and let the criticality measure satisfy
Xt (@ + 37) 2= ! (@) — my 157 (3.34)
with some k,, > 0, independent of k. If

Xi (26) + Imi(Zx)]] > ¢
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and if

lmg (@) < o1~ aM)Ag,

where o satisfies

€ €
< mi
7 < min 31— 0" A 3y (1 — ") Ay
t t (3.35)
f° min{ 2 (1—-a")} }
6(1 - an)ﬁllq SA‘rnaart ’
then for any p > 0,
Predy(3l,p) = Predi(8], p)
> LM (3 + 87 min {3 + 837), (1 — oA}
pj Cro 2 Cra AnFy 12
= (I @I — Imi(Ee + 57)IF) - (3.36)

Proof:  The inequalities ||m¢(2)] < o(1 — a™A] and ¢ < T AL mply
lm$ ()| < §. Thus, X2 (2x) > e

The conditions (3.34), (3.6) and (3.35) yield

X (B 4+ 877) = xt (Ek) — mellB)]]

2 n cfa
P 3¢7 ki Callmi (x|
2 n n j
> 3¢~ Ky O30 (1 — ") Ay
1
> —c (3.37)

3



Combining the previous inequality and Lemma 3.4.6, we obtain

Predk(éi, p) =

Predy(3}, )

> %cﬁx;:”(:%k -+ EZJ) min{chjy(:%k + §2’) (1-— oz")A}i}
1 t ;
+—66.tle min{fge, (1—-amAl}
~Fngor (1 — ) A, + = (Hmk (&)1 — lmi (@ + 500)11%)
> L (B 1 ) minfé (e + 807), (1 — a")AL)
+1 Z.\] {—— % €1 "
cteA? min —
6" 3Amm
— ko (1= a") A + (“mk( o)l = Imi (@ + 507)1%)
Since
cte che
< A i 1 —
7= 6Kllq(l — CVH) mln{ SAmum “ }

1t follows that

Predy(3},p) >

v

This completes the proof.

%cﬁx;ﬁ”(m + §,';’j) min{cyxa (1, + §2’), (1-— a”)A‘,i}
£ (il - | :
7 Wl (Z I? — lmi (. + 327117 )
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Lemma 3.4.7 asserts that if ¥} (Zx) + ||m§(Zx)]| > e px is increased only when

Im&(dx)|| > o(1 — a")A] with o defined in (3.35).
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The previous lemma imposed condition (3.34) on the criticality measure. This condition
is not very restrictive and is often satisfied if the criticality measure is given by (3.8). This

is the content of the following result.

Lemma 3.4.8 Let Assumptions AMI1, AM2 hold and let Z5(Z) be a matrix whose columns
span the null-space of Vmg (). If there exist k% > 0 and L, > 0 such that || Z;(2)|| < kg
and

1Z5(21) — Z5(@2)|] < La||#1 — o
forall 2,2, %5 € Q. and all k € N, then the criticality measure
Xi (Ex) = 125 (@) Vi (32) |

satisfies (3.34) with

" c 1
Ky = Lzky + KoKy
Proof: Since

Z¢ (@ + 80 TVmh (& + 877) — Zg(3) T Vmy, (2x)

= (Zilon+ 87) = Zg@n) Vi (B, + 87) + Zgae)T (Vi (@ + 87) = Vi ().
The assumptions on Z;(Z) imply

125 (8 + 837) Vi (2 + 827) |
> (| Zi(@n) " Vmi (@l — Lol sy W Vmi (@ + 3001 — 1 Z5(@0) T VPmi (3 + €375 |

> (|2 Vmi (@0l - (Lo + K2k 167
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where £, € [0,1]. ]

Lemma 3.4.9 Let the assumptions of Lemma 3.4.7 hold. If x}! (&) + |m&(&k)]| > € and

lms (2]l < o(1 — )AL where o is defined as in Lemma 3.4.7 then
Prediy(5], L) > FupeA] (3.38)
where® Ky > 0 is a constant which depends on €, but is independent of k.
Proof: Using (3.37) in (3.36) and (3.5) we obtain
~7 g Ly : C% M AJ
Predy(3],pl) = e mm{ge, (1-aMAL}

e

3 Ama:c

1 .
> gcgeAfg min{ 6,1 —a"}.

The last inequality implies the desired result if we set

t

1 c
t : 2 n
Klpr == = Cy€ININy ———¢€ 1—a"}.
DT 6 1 {32 . y }

3.4.3 Behavior of the Penalty Parameter

This section discusses the behavior of the penalty parameter. Algorithm 3.2.1 generates a
nondecreasing sequence { g%} of the penalty parameters. The main result of this section is

that this sequence is bounded.

3'ilpr stands for Lower bound on Predicted Reduction
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Lemma 3.4.10 Let Assumptions AMI1, AM2, AM3 hold and let the criticality measure sat-
isfy (3.34). Let k, j be any pair of indices such that p;” is increased at jth trial step of the
kth iteration. If X1 (%x) + |m&(2x)|| > € then there exists* Kypy > O which depends on €,

but is independent of k and j such that
PLA]L < Kt (3.39)

Proof: If p‘,i, is increased at the jth trial step of kth iteration, then the rule for the update of

the penalty parameter, step 6 of Algorithm 3.2.1, yields

8lmh (8 + 8) + (Vg = Mm@ + 8) — mi (24)]

Jlm (@) 12 ~ [l (2 + 55711

o=

or, equivalently,

2 Umi @l = Imi (2, + Sl

~ -

= mge(jk + ‘§k> (Ai—l—l )‘i)TmZ(i"k ~+ §77c) - mic(ik)

FEImE @I — mg (@ + 8017
= mb(Zy + &) —mk (3 +577)
—mt (&) + mi (B + §§;’) + (;\’,’;Jrl — ;\fﬁ)lmz(:&k 4 &%)

P2 ) — g+ 01 (3.40)

4/%,1,” stands for Upper bound for Penalty parameter and Trust-region Radins
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If we apply (3.5) to the left hand side of (3.40), (3.13) and Lemma 3.4.5 to the right hand
side of (3.40), then we obtain

P

5 Cllmi (Ze) || mindes Jmi (2w ), a"AL}

IA

—cix M (2 + §2J) min{csxy (3, + 327) (1- a“)Ai}

gl ()| — S (Tmi (s + €579y (@) V'8 — SV (i + €377)" 577

IA

S 16 c/a N 4 an,
Kitgllma (Te)ll — Z(V‘mz;(l‘k + £87Tymg (d) )" 87

ﬁllq“mk($k)”+ﬁlivmk(mk+£mj>””mk( ][]

IA

IA

(e + (o + 82 ) Il
The last inequality implies

P

5 crmin{ez|mi (@), a" A}

< g+ 2 (€115 (3.41)

Since the penalty parameter increases we have ||m& ()]l > o(1 — a")AL (otherwise,
Lemma 3.4.7 implies that Predy, (8], o) > (pL/8)[IIm§(&1)]12 — Im§ (2 +357) |?]). There-

fore (3.41) implies
g min{cio(1 — a™)AL, a"AL} < (Sky, + 28K K1pAmaz) /€1 -

The assertion follows with

8Hllq -+ QJBkEAmax

b min{co(1 —a"),a"}’

Ryptr =
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Lemma 3.4.11 Let the Assumptions Al, A2, AMI-AM4 hold and let the criticality measure
satisfy (3.34). If the penalty parameter is increased at the jth trial step of the kth iteration
and if XM (23) + ||m$(2r)|| > € then there exists a A, > 0 which depends on € but is

independent of k such that

AL > A, (3.42)

Proof: If we are at the first trial step of the iteration k, i.e., if 7 = 0, then the rule in (3.17)

guarantees that

Thus we can restrict our attention to the case where 7 > 1. Since the penalty parameter is
increased at the jth trial step, Lemma 3.4.7 implies [|[m(d;)]| > o(1—o")AL. We consider

the following two cases:
i |mi(8)] > o(1 —aMAL foralli=0,--- .7,
ii. |mé()] > o(1 — a™)Aj does not hold for some 0 < 7 < j.
i. Assume that |m¢(2:)| > o(1 — @")AL foralli = 0,--- , j. From (3.24), we have
| Ared(sy, i) — Predi(y. i)l < kumpr D [lsi ]
Since ||mg (@) > o(1 — a™)AL, the rule for updating p}, and (3.5) imply

Predi(3i,p1) = "Elmi(@n)l® — Img (@ + 52717

> B i)l min{o(1 - "), 0"} A%
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Thus
| Ared(st, pi.) = Predi(3;, ot)] Bty || Sill”
= < = — . (344
Pred(8:, pb) c|lmé (2x)|| min{cfo (1l — a"),a"}
Since all the steps st fori = 0,--- ,j — 1 are rejected, we have
Ared 2K
1 red(si i) _ |, (345)

< e
" Predy (52-: pﬁe)
Combining (3.44) and (3.45), we obtain

1 — )] min{cfo(1 — a"
1 2

i , o o/ o .
Il = b @) Vim0 1. (3.46)

Snubr
Since the step s, " is rejected, we have Al = a,||s]7". Together with |mg(2x)|| >

o(l — a™AY and AY > Ay, it follows that

AL = alst
o [ =) )
8K’ubr
5 A (3.47)

i If [ (25)|| > (1 — a")AL does not hold for some 0 < ¢ < j, then there exists a
largest index [, 0 < I < 7 such that ||m$(2))|| < o(1 — o)Al holds.

If j =1, then A > ||sL].

If j =1 + 1, the rule of updating the trust-region radius implies AJ = o ||s}]|-

If 7 > 1+ 1, then |m§(dx)|| > o(1 — a™)A} foralli=1[+1,--- 4, and analogously
to the derivation of (3.46) we can show that

(1 — )} min{cjo(1 —a")

Blla 7an c/a . .
ISl > Mm@ Vi =141, 5 — 1.
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+1

Since s, " and s}t are rejected trial steps and ||m§ (y)|| > o(1 — )AL, it follows that

A, = oallsp

(1= m)ef min{cjo(1 - a"),a"} nmz@k-)“] "

8’{ubr

v

Xy

v

: ] 3 U n n 1
o |o(1 — o (1—m)c] mu;icza(l —a"),a"} Afjl] /7
ubr

1 — I "o(l — a" n 1y
_>_ oy ala(l o an)( 771)61 mln{CZJ( a )7 o }] ”SIIIVHI/'Y (348)
8“ubr
Let
1 — N 4yt P51 — a™). o’ 1/
- min{oq,al [ala(l _ an)( m)c) min{cho(l — a"), a }] }
Slf'ubr
In the subcases j = [ and j = [ + 1 we have (recall that v € (0, 1])
A = faul|sill = s min{L, [|si |7}
In the subcase j > [ + 1 we have
AL > okl
Hence in all three subcases j =1, j =1+ 1, 7 > [ + 1 we have
Al > ky, min{1, ||sL|I*7}. (3.49)

From Assumption AM4, Lemma 3.4.10, ||m¢(2:)]| < o(1 — a")AL, and ||s}|| < AL
we have
| Ared(s}, pi,) — Predy (8, pi)]
< ("‘ub71 + hubr2pkAlg + ﬁ;ufnSU(l —-a" /OkA ) ”Sk“’YAl

< (Kubrl -+ Koubr2 Buptr + ’{ubTSU(l - an)ﬁuptr) ”S“PAZ (350)



Since ||m§(2x)]| < o(1 — @")AL, Lemma 3.4.9 implies
Predi (3L, pt) > KiprAL.

Combining (3.50) and (3.51) and the fact that s is rejected, we obtain

Ared(st, ol
Log < |Aredlsee) 1]
Predy(8}, o)
(ﬁubrl + KubraKss + Kub7‘3o-(1 - Qn)/{’upt?‘)”f"gg”v
- Ky .
Therefore
1/
st >{ 0= ) ]/ |
k= Rabrl + Roubr2 Foss + fiub‘rBU(l - an)mupt‘r

Using (3.49) and (3.52), we obtain

/4
. 1 —m)k de
Al > Ky, min 1,[ U-mmy ] = Ay
Koubrl + Rybr2K3s -+ K'ubriio—(l — )/{‘upt'r

The bounds (3.43), (3.47) and (3.53) imply the desired result if we set

A* = min{Aminy Al*: AQ*}

The following lemma guarantees the boundedness of the penalty parameters.
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(3.51)

(3.52)

(3.53)

Lemma 3.4.12 Let Assumptions Al, A2, AMI-AM4 hold and let the criticality measure

satisfy (3.34). If xM () + |m§ (k)| > € then there exists a p, > 0 which depends on ¢

but is independent of k such that

Hmg oo P = Px

(3.54)
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Furthermore, there exist a k, € N such that py, = p, for all k > k,.

Proof: From Lemmas 3.4.10 and 3.4.11, we have that for any pair &, j of indices

Thus the sequence {py } is bounded by p, = %Pﬂ From the rule for the update of penalty
parameter, every increase in py is by at least /3. Since p, < oo, there can be at most finitely

many increases, which implies the existence of k, such that p, = p. forall k£ > k,. O

Lemma 3.4.13 Let Assumptions Al, A2, AMI-AM4 hold and let the criticality measure

satisfy (3.34). If x21(21) + ||mi(@x )|l > € the sequence {|L(xy, Xi; pr)|} is bounded.

Proof: This result is a direct consequence of Lemma 3.4.12. 0

Lemma 3.4.11 established the existence of a lower bound for the sub-sequence {A7}
of trust-region radii for iterations k, 7 in which the penalty parameter is increased. The
following result established the existence of a lower bound for the entire sequence {Afc} of

trust-region radii.

Lemma 3.4.14 Ler Assumptions Al, A2, AMI-AM4 hold and let the criticality measure
satisfy (3.34). If xM (&x) + |m§(Ex)|| > € then there exist a A, > 0 which depends on €
but is independent of k such that

AL > A, (3.55)
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Proof: The proof is similar to that of Lemma 3.4.11. The rule of updating trust-region
radius in Algorithm 3.2.1 implies that Ay is bounded by A,y if the first trial step is ac-
ceptable. Therefore we consider the case where at least one unsuccessful trial step occurs
in search of an acceptable step. Assume that we have j > 1 unsuccessful steps. Similar to
Lemma 3.4.11, we consider two cases:

i |lmé(2)]] > o(1 — ™AL foralli=0,--- ,j.

ii. [|m§ ()]l > o(1 — a")AL does not hold for some 0 < ¢ < j.

i. In the first case, we proceed as in the proof of Lemma 3.4.11 to show the existence

of Ay, > (), independent of k and ¢ such that

ii. Suppose that ||m¢ ()| > o(1—a™)A% does nothold foralli = 0,.. ., j. Let[be the
largest index such that ||m§(2x)|] < o(1 — a™)AL holds. Since ||mf(2;)|| < o(1 — ™)AL,
i = 0,---,l, Lemma 3.4.9 implies that Pred; (5%, p%) > KA} for all 4 < [. This

inequality, the fact that s, is rejected and (3.24) imply

Ly < | Aredish. ) _1] < PRSI e s
H’lp’rAk K,zp,,»

VS | Preds G o)

Thus forall: <,

1/~
ap 2 s > [k
b= - Fashy P

For all 7 > [ we have from (3.49) and the above inequality,

i : 111 (1 - nl)fglp'r s def
AL > kg, min{1, ||s4 177} > Ko min < 1, e = Do,
Kobr P«
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The desired result now follows with

A* = Hlin{Aminv AI*) A2*}-

3.4.4 First Order Global Convergence Result

The following Theorem shows that the criticality measure and the norm of the model con-

straint at iterates {7y } generated by Algorithm 3.2.1 converge to zero.

Theorem 3.4.15 Let Assumptions Al, A2, AMI-AMA4 hold and let the criticality measure

satisfy (3.34). If there exist € > 0, such that
X (@) + Imi @l > ¢

then

Jim fim ()] = 0. (3.56)

If in addition Assumption AM6 holds, then
Plim lle(zy )|l = 0. (3.57)

Proof: Assume that (3.56) is false. Then for every 7 > 0 there exists an infinite sequence

of successful iterations {k;} such that ||mj(Z,)|| > 7 forall j € N.
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Lemmas 3.4.12 and 3.4.14 and (3.5), (3.29) imply

p"j ¢ [ An
Preds, = 5 [Imi ()|~ Imi( + 5)1°]

APxy ora : o/

> = lImi(ay) I min{ey|imi (2], o" Ax, }
]

> 287 min{ciT, 0" A}

=k > 0,

forall k; > k,, where &, is defined in Lemma 3.4.12. Hence, for k; > k&,
L(zy;, My pe) = L(@ija1, Aja1; o) = Aredy, > mPredy; > mk. > 0.
In particular
L{@h a1, My ) < L@y, Ay o) — (By = kp)mif.

for all k; — k,. This contradicts the fact that {|L{zx, Ax; pi)|}. Hence (3.56) is proven.

The equation (3.57) is an immediate consequence of (3.56) and Assumption AM6. O

The following Theorem shows that the criticality measure and the norm of the constraint

at iterates {zy } generated by Algorithm 3.2.1 converge to zero.

Theorem 3.4.16 Let Assumptions Al, A2, AMI-AM4 hold and let the criticality measure

satisfy (3.34). The sequences of iterates generated by Algorithm 3.2.1 satisfy
iMoo (X2 (1) + [mE(26)]]) = 0. (3.58)
If, in addition, Assumptions AM5 and AMG6 hold, then

lim (o) + le(zo)l) = 0. (3.59
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Proof: Assume there exists ¢ > 0 such that x! (Z;) + ||m§(Z)|| > e. Theorem 3.4.15
implies ||m$(Zy)| — 0. Therefore, {x# (1)} cannot converge to zero.

Suppose that x(2;) > 1 for some 71 > 0. Since ||m§(Zy)]| — 0, there exists K > k,
such that ||m§(ig)| < o(1—a™)A, < o(1—a")Ag forall k > K. Inthe last inequality we

have used Lemma 3.4.14. Thus Lemma 3.4.9 implies that Predy, > kA forall k > K.

Using an argument analogous to the one in the proof of Theorem 3.4.15, we obtain
L@y, Akys pu) — L(@hje15 Ay 415 ps) = Aredy; > m Predy, > mrp Ay > 0,

which contradicts the boundedness of {|L(zx, M; pr)|}. Hence the assumption y (2,) +
lms(2)]| > e is false.
Equation (3.39) is an immediate consequence of (3.58) from Assumptions AM3 and

AMS6. O

3.5 Specialization to Unconstrained Optimization Prob-

lems

Our GTRSQP algorithm and the corresponding convergence result can be specialized to

unconstrained optimization problems of form

min f(z) (3.60)
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where z € RY, f : RV — R. In this section we sketch this specialization and we discuss
how our algorithm and the corresponding convergence result relate to those in [2, 15]. Since
the convergence results in {15] are stronger than those in [2], we concentrate on the former.
The specialization of our GTRSQP algorithm to unconstrained optimization problems
of form (3.60) is given as follows.
Let P, € RY*Me | Atiteration x, = P4 we have a model m}; (2 + 8§) of f(zx + P8)

and Ay, > 0 and we compute a trial step as the approximate solution of

min  m] (& + §),

. (3.61)
S.t. HP]{S” < Ap.
We require that the trial step 3, satisfies
mi (&) — ml (&, + 85) > ExM (&) min{cxM (#), Ax}, (3.62)

where ¢}, ¢ > 0 are constants independent of & and
X! (@x) = Vi (@)l

Algorithm 3.5.1 1. Initialization. Given xy. Choose Ay > 0, 0 < 1 < 12 < 1,

oy < 1 < o, and €5 > 0. Set k = 0.
2. IFIV (2l < €1, then terminate.
3. Generate a model mﬁ, a restriction Ry, and a prolongation Py. Set &), = Rpxy.

4. Compute a trial step 3, that satisfies (3.62).



57

5. Evaluate the trial step s;, = P35, Compute

p — L) = St se)
 oml (&) — mL (e + )

Set
arllsell ifre <m,
Ap =1 Ag ifm <1y <1,

COYAVERES ' S 7

If r, = my, then set Ty = T + Sk, D1 = Ay, k =k + 1 and goto 2, else goto 4.

We impose the following assumptions on f and on the models m',’; . Let 2 C R be an

open subset such that 7, z; + s; € ) for all £ € N. We assume that
Al. The objective function f is twice continuously differentiable in €2.
A2. There exists a constant kf, > 0 such that | V2f(z)|| < kI, forallz € Q.
A3. The objective function f is bounded from below on €.

Let ) C R be open, convex subsets such that Zy, Z) + 53 € ) for all iteration k € N.

We assume that
AM1. For all k, the model m,’: is twice continuously differentiable in ¢ 1.

AM2. There exists a constant %, > 0 such that ||V?m] (£)|| < s} for all # € ) and all

keN.

AM3. The matrices Py, k € N, have full rank /V,, and there exists x;, > 0 such that || P, Z|| >

Kip||2]| for all 2 € R and for all k € N,
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AMA4. There exists a constant ¢; > 0 independent of k such that

IPIV f (i) = Vi (&) < e1Ay.

AMS. There exists a constant v, > 0 independent of k such that |V f(z,)| <

IVl ()| for all k € N.

Theorem 3.5.2 Let Assumptions AI-A3, AMI-AM4 hold. The sequences of iterates gen-

erated by Algorithm 3.5.1 satisfy

Jim |Vml ()] = 0. (3.63)

If, in addition, Assumption AMS5 holds, then
lim [V ()]} = 0. (3.64)

Proof: The somewhat lengthy proof can be obtained by rather straightforward extensions
of the convergence proof for the basic trust-region algorithm found in [10, Sec. 6.4]. We

omit the proof here. O

To compare our convergence result with existing ones, we assume B, = P, = [, i.e.,
Ty = .C%k and S = §k

The convergence result in [15] (which builds on [7, 27]) requires that

IV f(zx) — Vil (z)]] < €1Vmi(z)]), (3.65)
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where 0 < £ < 1 — 135 and 7, is the parameter in the trust-region algorithm 3.5.1. Using an

idea in [22], it is possible to replace (3.65) by
IV £ (z2) = V()| < ¢ min{ Ay, [[Vmf (za)]]}, (3.66)

where { > 0 is a constant independent of k. The constant ( is not tied to parameters in the
trust-region algorithm, in particular it is not required that { < 1.

We note that (3.65) implies AMS with ~,, = 1 + &£. Condition (3.66) implies AM4 and
AMS withey = (and vy, = 1+ (.

On the other hand, AM4 and AMS5 imply (3.66) with { = max{cy, 1+ ”/x}-

3.6 Computation of the Quasi-Normal Step

The quasi-normal step subproblem (3.3) is a norm-constrained nonlinear least squares prob-
lem. An approximate solution 5}, of subproblem (3.3) can be obtained by applying a trust—
region method to (3.3). The ith iterate in this trust-region method applied to (3.3) is denoted
by 3}, the ith step is denoted by Z;, and the trust-region radius of the sth iteration is 0 k-
The trust-region subproblem in the ith iteration is given by

min ||\mg(dy + 87,) + Vg (2, + 570721,
st | B3] + 2)|| < oAy, (3.67)
1PL2]) < o0

To simplify this presentation, we only increase the iteration count 7 when the iteration is
successful.

The initial iterate in the trust-region method applied to (3.3) is chosen to be 55, = 0
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and the initial trust region radius 47 , = a"Ay;. Thus the first subproblem (3.67) becomes

min ([ (2x) + Vmi(2s)" 2,

Bk (3.68)
st |Pez]l <65,

We require that the approximate solution 2, of (3.68) satisfies the sufficient decrease con-

dition
I (@I~ Imf (@) + Vg (2075 .69
=z allmg (@)l min{ea|lmi (@)l 05,
where ¢; € (0,1), o > 0 are independent of k.
Let 0 < n",~7,7% < 1 be given parameters. The step £, will be accepted if

lmg(@)l]* = [lmg (@) + Vmg (2x) 2ol
If 2y is accepted, the next trust-region iterate is 87 , = Z and the corresponding trust—
region radius satisfies 07, > 7705, If (3.70) is not satisfied, the step Zy will be rejected,
95, will be decreased by a factor between -3 and ~7, and (3.68) will be resolved.

We will show below that to satisfy (3.5) it is sufficient to perform only one successful
step in the trust-region algorithm for (3.3). Additional trust-region iterates might be ben-
eficial numerically. They are required to satisfy ||mg (&, + 87, )[|* > [Img (2 + 80,140 |1
One could perform additional trust—region steps as long as || P 2|| < 87, implies || P, (387 +

Z) < a"Ay, ie., as long as (3.67) reduces to

min |lmg (& + 87,) + Vmg(dy + 37,) 72,
st ||Bez] < ony

Alternatively, one could also use a trust-region method for norm constrained problem [19].

A general algorithm is given as follows.
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Algorithm 3.6.1 1. Initialization. Let 0 < n",7{,7; < 1 be given and set 5, =
O.. 58,k = anAk.
2. Compute a trial step Zy of subproblem (3.68) that satisfies (3.69).
3. Compute

" I (@)l — Im (& + 20)1°
U Imi@)l? = Imi(2e) + Vmi (@) 2P

T

Ifrt < n", reduce 67 . by a factor of at least ¥} and at most ~5, and goto step 2; else
p <7 o,k 0¥ Y1 ¥2 8 D

set 87, = Zy and choose 67 ;, > 7{0p .-
4. Fori=1,-+ igax — 1
(a) Compute a trial step Z; of subproblem (3.67) that satisfies
g 4 B3I > (s + 835 + 20 3.7

and || Py(8}, + 2)|| < a"Ay.

)

(b) Set §_'-‘)k = &) + Z.
End

5. Set 3] = &}

lmaxak

Of course, for a practical algorithm one should specify another stopping criteria in addition
to the maximum number of iterations. Also, the nondecreasing property (3.71) should be

strengthened. Algorithm 3.6.1 was kept general on purpose so that it can cover different
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variants, but still ensures that the computed quasi-normal step meet the requirements (3.4),
(3.5), and (3.6).

We call the Oth trial iterate successful if rj > 7".

Lemma 3.6.2 Let assumptions AMI, AM2 and AM3 hold. For any Ty, % + 29 € (I, we
have

[Img (&5 + 20|12 = Img(@x) + Vmi (&) 2|7 < allzl (3.72)

where

c .C 2
_,.c c KgAmaw ’L"HAmacc
a = K$ max < Ko, : : .

Proof: From assumption AM1 and AM2 on m{ and Cauchy-Schwartz inequality, we have

[llms (& + 2o)|I” — lImi(x) + Vmg ()" ol?]
= |lImi(&x) + Vmg(£x)* 20 + 127 Pmg (&, + E80)2o)|* — lImi (8x) + Vmg ()" 20|
< |(mg(x) + Vmg ()T 20) " (27 VPm(Ex + €20)20)| + 15207 Vi (& + £3) 20|12
(%)

< sl 2ol + kgl + =[5l

Assumption AM3, the choice of ¢j ;, and the boundedness of Ay imply

58,k S é__l.: S Am(m.

ip Kip Kip

2]l < ;{%u%u <

~

This gives the desired estimate. O
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Lemma 3.6.3 Let assumption AM1,AM2 and AM3 hold, let ¢y, co be the constants in (3.69)
and let a be the constant defined in Lemma 3.6.2. If |m5(Z)|| # 0 and if

Cl(l )

Gop e
ok = max{a, l/c }”

k(E) (3.73)

then the trial step Zy will be accepted.

Proof: Notice that 0 < ¢ < Tand 0 < n" < 1 imply ¢;(1 — ") < 1. Hence, (3.73)
implies
Go i < Callmi(Ze)ll-
This inequality and (3.69) yield
lmi (&) [1® = (@) + V(@) 202 2 enllmi(a)]| min {callmi (24)l], 65, }
= cullmg (@) 65, (374

Now we apply Lemma 3.6.2, (3.74), and (3.73) to obtain

Imi(Ex + 20)I1° = lIm (2x) + Vmg (82) %]

s — 1| — " — s
0 lmg ()7 — Img(Ex) + Vmg (@) %l
0358,;;
allmi (@)l
< 1—-n"
Therefore r] > 7", which means Z, will be accepted. 0

Theorem 3.6.4 Let assumptions AMI1,AM2 and AM3 be satisfied. There exist cf,c5 > 0,

independent of k, such that the quasi-normal step 8} computed in Algorithm 3.6.1 satisfies

Img (@)l? — llmi (@ + S = Almi (@)l min{c3[mi (@)l a"Ae}. (B.75)
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Proof: Let c¢;,cy be the constants in (3.69) and let ¢ be the constant defined in
Lemma 3.6.2.
We distinguish two cases.

Case 1: Let

n Cl(l 'Wn) ca
kS M”m (2)]]-

a”
Since 45, = a"A}, satisfies (3.73), Lemma 3.6.3 guarantees that the first trial step is suc-
cessful,

o oa
Sl,k = Zg-

The definition of a successful iterate and (3.69) yield

ImiEl® = i@+ 8P = 0" (Imi(@a) I — Imi(Ee) + Vmi(2:)" 816 ]7)

> n'almg ()l min{co|lmi(2)ll, o" AR}
Since all subsequent iterates satisfy (3.71), we obtain

I

lm (&) I1* = limi (@ + SOI” 2 n"erllmi (86)]| min{eallmi (24)]], " AR}

Case 2: Let

nAD Cl( ) 3
g > 20T )

Let 4, be the trust-region radius that corresponds to the first successful trial iterate.
Lemma 3.6.3 and the fact that at the end of an unsuccessful trial iterate the trust-region

radius is reduced by at most 5 imply the inequality

a(l—=n")

mllmi(@kﬂl. (3.76)

o > 72
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The definition of a successful iterate, (3.69), and (3.76) yield

I @)I? = Imi@s+ 80l 2 0" (Imi@l* — Imi(@e) + Vmi (@) 81,07)
z nreallmi(&e) || min{es||mi(24)ll, 66,5}

n . n Cl(l “77“) crAa
> nclmln{@,w'zm ”mk(ﬁk)HQ-

Since all subsequent iterates satisfy (3.71), this implies

c/a 2 cra ~n n . n 01(1”77”) cra
”mk(mk)“() — |lmy(Er + Sl,k)”2 2 1 ¢pmin {@ﬁzm ”mkz(fﬁk)]|2~

The desired result now follows with

a(l —7") } .

n n n 2 n
ci =n'c;, ¢ =miny ey, Y)——r—"ttr
! ’ { *max{a, 1/c;}

Theorem 3.6.5 Let the standard assumptions AMI, AM2, and AM3 on mj, be satisfied. If

the trust—region steps z; satisfy
2l < esllmg (2 + 57, (3.77)

for some c3 > 0, independent of i and k, then the quasi-normal step 8}, computed in Algo-

rithm 3.6.1 satisfies

188l < c3llmic ()l (3.78)

WIth €5 = IymaxCs.



Proof: The conditions (3.77) and (3.71) imply

Hz“ < c3|lmi(§3k)“* t=0,..., tmax —

. ~n R o PSR
Since 871 = 2192 J =0

.....

Tmax — 1, W€ obtain

llgk ” < maxC3 ”mz (ii"k> H

1

66
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3.7 Computation of the Tangential Step

3.7.1 Well-Posedness of the Tangential Step Conditions

We require that a tangential step §' satisfies (3.10), (3.11) and (3.13). However, it is not
obvious that a point exists that satisfies these three conditions simultaneously. The exis-
tence of such a point is the goal of this section. We will show that under certain conditions
a solution 3§t of (3.7) satisfies (3.10), (3.11) and (3.13). Obviously, since any local solu-
tion 8¢ of (3.7) satisfies the constraints, it obeys (3.10) and (3.11). Hence we only need to

concentrate on the condition (3.13).

3.7.1.1 A Modified Tangential Subproblem

We begin by looking at the modified tangential subproblem
min mi(Zy + 8} + §),
sit. mi(Ey + §L+ 8) = mi (2 + 8}, (3.79)
[Pe8]] < (1 — a")Ay.

Note that since [|P,37]] < a"Ay, any point § that is feasible for (3.79) is also feasible for
(3.7) and (3.14).

To alleviate the notation we introduce the functions
ok(3) = my(Ex + 8+ 8), (3.80)

With this notation, the modified tangential subproblem (3.79) reads
min  ¢x(5),
st he(§) =0 (3.82)
[1Pe8] < (1—a")A.
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Notice that the Jacobian Vhy(8)T of by at §is VA, (3)T = Vmé (8, + 87 + 5)7. There-

3.7.1.2 Reformulation of the Tangential Subproblem

fore the matrix Z¢(Zy, + 87 + 3) that defined in (3.9) spans the null space of Vhy(3)".

Theorem 3.7.1 Let AMI and AM3 hold and define Dy, = PI'P, € R¥. Assume that

(Vh(3k.), 2Dp81,.) 7 has full rank if || Pedy .|| = (1 — a®)Ay and VA(3.)" has full rank

iIf || Predi o] < (L — a")Ay. The following statements are true.

i. If 8k . is a solution of tangential subproblem (3.82), then there exist Lagrange multi-

pliers M. = A8k and i, = j1(8y.) such that
Vo (3k.) + Vhi(8pa)h 4 20 Diére = 0,

hie(8re) = 0,

pa((1 = a")?Af — |Pedesl?) = 0,

v
o

[

il If 8 N, and 1., satisfy (3.83) and if there exists y(33,.) > O such that
07 (V2 (or(3 (80T A Dy} o > y(&,0ll8]
0 (B (8k,) + P(Br,)" As) + 20D ) 0 2 y(8,) |1 0]

Jor all © # O with
th(gk’*)T,& =0 lf”PkSk’*” < (1 — Q’n)Ak,
th(ék*)T?AJ = () and 'Z:‘TDkéh* =0 lf”Pkék,*H = (1 - Qn)Ak,

then $y, . is a local minimum of (3.82).

(3.83)

(3.84)

(3.85)
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Our goal is to relate (3.82) to a problem without equality constraints. For this purpose

we introduce
Wi(5, 0, 1) = u(8) + (3 A5, ) + Em(9) 3 (3.:56)
where A(3, p1) is the unique solution of

Vhi(8)" (V@c(é‘) + Vhi(8)A + 2uDk§) =0

ie.,

A8 1) = ~ V(3T V(&) Vi (3)T (Vor(3) + 2uD45). (3.87)

Theorem 3.7.2 Assume that AMI hold and the Jacobian Vhi(8) has full rank. Let

U,.(3, p, 1) be defined as in (3.86) with A(, ) as in (3.87). Then
i. Uy is differentiable with respect to 5 and
VU(3, p, 1) = Vi(8) + Vhr(8)AE, 1)+ pV i (8) i (3) + VA(3, 1) (), (3.88)
where the Jacobian of (3, 1) with respect to § is given by®

VAG )T = —[Vh(8)TVh(8)]™
X [th(g)T (v2 [61(8) + P (8) N5 oo + Q/ka)

+V2hk(§)T(V¢’k(§) + Vhe(3)AE, 1) + Q,uDk.,é)] .(3.89)

SHere and in the following we use V2hy,(8)Tv as a shorthand for Y. % V2(hy(5))iv;, where (hg(3)); is

K2

the ith component function of .
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it. Uy, is twice differentiable with respect to § and
VA8, 1) = VIGR(8) + Pu(3) Mlscags + #VRR(E) VRe(8)T

+VAG, 1) Vi (3)" + VR (3)VAGS, 1)

+V2AG, 1) h(3) + pV e (3) R (8). (3.90)

Proof: i. By definition (3.87), A(3, 1) solves
(Vi (8T Vh(3IAG, 1) + Vi (8)T (Vi(8) + 2uDi8) = 0.
By the implicit function theorem

[Vhe(3) VI (8)]VAGE, p)T

FVh(8)T (VZ[@(@) + hi(3)TA]|

A==A(8,p)

+V2he(3)" (V6r(3) + VAs(A(E, 1) + 2uDi3) =0,

ii. Differentiation of (3.88) gives (3.90). D

Consider the subproblem

min qjk('§~ P “)7

st 1Pus] < (1— a")As 651

Theorem 3.7.3 Let AMI and AM3 hold and define D), = PP, € RVx.



i. If 3k« is a solution of (3.91), then there exists 0, = 0 (5. ) such that

VU354, p, 1) + 20Dk = 0,
o.((1 = a")?Af = [|1Pdiall®) = 0,
o, > 0.
ii. If 8. and 0. satisfy (3.92) and if there exists Y(3p.) > 0
0T (V2UL(8h,00 p, 1) + 20, D1) 0 2 (35, [0

for all

i % 0 @f”Pk§k7*“ < (1 - Ctn)Ak,

D 7§ 0 with ’IjT.Dkégk,* =0 UC”Picgk,*” == (1 - a”)Ak;

then 5. is a local minimum of (3.91).
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(3.92)

(3.93)

(3.94)

Theorem 3.7.4 Assume that AM1 and AM3 hold and define D), = PL P, € RYs. Assume

that (Vh(3,.), 2Dyée.)T has full rank if || Podi) = (1 — «")Ag and Vh($;,)" has full

rank if || Pedr || < (1 — o)Ay,

i. Consider (3.91) with pp = .. Let p > 0 be arbitrary. If $;, , XM L SOlve (3.83), then

Sk Os = [ SOIve (3.92).

ii. Consider (3.91) with n = p.. Let §k,*:5\*:ﬂ* satisfy (3.83), (3.84), (3.85). There

exists p. > 0, dependent on 3y ,, such that for all p > p. the point §;, , and Lagrange

multiplier o, = L, satisfy (3.92), (3.93), (3.94).

~

Proof: i. Let 54 ., A, i, solve (3.83).
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The first equation in (3.83) and the definition (3.87) imply that A, = \(8.., f1a)-

Since hy(8k.) = 0, (3.87) and (3.88) imply

V‘l’k(§k,*,p, u*) + /,L*§k’* = (I - th(§k_)*)[th(§k’*)Tth(§k’*)]"1th(§k}*)T)

X (Vr(Sk,) + fhSr) -

Since

(T — Vi (850) [V P (810) T V i (81,)] T Vi (8,0) ) Vhie(850) = 0,

we can multiply the first equation in (3.83) by I -
th(§k7*)[th(§k*)TVhA<§k7*)}_lv}lk(§k*>T to show that §k_:*, O, = [L, SOlvVe (3.92).

ii. Let 5 ., /A\*, Ly solve (3.83). The first equation in (3.83) implies

VAGra )T = —[VA(3) TV (Gra)] Vg (850) "

X (v[¢k(§k,*) + hk(ék,*)Ti]lxz:\(s-k,*,u.*) + QN*Dk)' (3.95)
Since hg(8g.) = 0,

VA0 (Shes o) = V0Dr(8he) + Pr(8) Nl ) + AV AR Gr) VIR (31) "

VA 1) VR Gr)T + V(30 ) VA Sy 1)
With

Q3ra) = V3r(5ks) + hi(8e)TA]

’izj‘(gk,* nu‘*) + Z/L*Dkﬂ

H(3e) = Vh(Ge)Va(8r)T Vi8] VAag(3k4)7,
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we have

VAU (85 mr P, ) + 20D
= QB8k.) + PV k(810) Vi (31,0)" — Q8r) H (Bkx) — H (8, )Q(81)-
Case 1: Let || Puér .|| < (1 —a™)Ay.
Let v be arbitrary and decompose v = u + w with u € N(Vhy(3;.)7) and w €

N (Vg (32)T)

If 7(41.) is the smallest positive singular value of Vi (35.)7, then

”th(§k7*)Tw”2 > T(§k;*)2”w”2 Vi € RN,
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Using the definition of (8 .) and H (3. .) and (3.84) we obtain
(u+ w) " (VUL (Bins 5 pa) + 210 Dic) (1 + )

= uTQ(§k7*)u + Q'UTQ@;C’*)’IU -+ wTQ(ékj*)w + ,OHth(éky*)TwHQ

—2uT Q81 ) H (3 )w — 20" Q81 ) H (Bru )W,

v

¥k lull® = 201 Qe lwll ~ 1QGk) Ml + p7 (55, [l
—2/|Q(3k, ) H G lullllw] — 21 Q(Sk) H (Be )l

) e (\/ G- 2096l ”)
V¥ (3k,)

QY o
HFCIEN ol -+ pr(ss

2
20Q(61) H ()|
( S e u)

4“@(Sk *) (Sk,*)”2> ”,wHQ

Qe +

_+_

QHQ Sk* I’.[ Sk H -+

¥(8k,s)
> ’—YT—)-nuu“‘ (500" - 1) — 22l
~2Q60. 1 (a1,)) - LT Ly e

The assertion now follows if we choose

U (ot o QG o
pr > = (10l + A9 (s, (a1 +

41Q(8r ) H (35 +) U2>

75k
Case 2: Let || P8i.]| = (1 — o) Ag.
Let v be arbitrary and decompose v = u + w with u € N{((Vhi(8k.)| Didi.)”) and

w e N((th(g’k*)leék,*)T)l Since N((th(§k,*)T) C N((th(gk’*)leé\k*)T), w &
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N((th(gktND;ﬁk*)T)i C ;V((th(§k’*)rf)l“.

If 7(3y,.) is the smallest positive singular value of Vh(5,.)", then
VA (8.0)Tw0])? > 7(85.0) 0| Vo € RY.

The remainder of the proof is identical to the proof of case 1. O

3.71.3 Conceptual Algorithm for the Reformulated Tangential Subproblem

Let 3, be a global solution of (3.82), let 1, be the corresponding Lagrange multiplier and
let p, be the penalty parameter specified in Theorem 3.7.4 1i.

The subproblem (3.91) with p = p, and u = p, is solved using a trust-region method.
The 4th iterate in this trust-region method applied to (3.91) is denoted by 3, 4, the ith step
is denoted by 2;, and the trust—region radius of the ith iteration is J; ;..

min V\Pk(§1k7 Pxs //L*)T»% + %22‘V2\Pk(§’i,ky P #*)2,
st || PelBin+ 2)]| < (1— a")Ag, (3.96)
| Pr2l < 6f -

To simplify this presentation, we only increase the iteration count ¢ when the iteration is
successful.

The initial iterate is chosen to be 5o = 0 and the initial trust-region radius is &, =
(1 — a™)A;. With this choice of initial data the trust-region subproblem (3.96) with 7 = 0

reduces to

min V\Ijk (é(),ka P M*)Tﬁ + %QTVQIIJIC(S:O,M Py /u'*)é’

st [Pl <65, (3.97)
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For reasons that will become apparent later, we replace the Hessian in (3.97) by zero. Thus,

our initial trust-region subproblem is

min V\I’k(§07k, P, M*)Té

3.98
st Bl < B G

A standard result in trust-region methods states that the solution 2, of (3.98) satisfies the

sufficient decrease condition

MV\II}C(go,k: P, M*)Téo

> e IVUR(Bo ks pe, ) || In{Cal VW& (S0.k, sy 1)1l G0 T (3.99)
where ¢; € (0,1), o > 0 are independent of k.

Remark 3.7.5 Note that c; depends on the Hessian of the model. For the model in (3.98)
this Hessian is zero and, in particular, ¢y is independent of k. If we had used the exact
Hessian Vz‘lfk((%,k, Ps, fx) as 1n (3.97), then it would have been unrealistic to assume that
¢y is independent of k, since the norm of the Hessian depends on p., l., which in turn

depend on 3y .

Let 0 < 77, 7%, v5 < 1 be given parameters. The step 2y will be accepted if

U (S0 s Py tox) — Vic(So.x + 20, P, 1)
—V W80k, prs )T 20

>t (3.100)

If 2y is accepted, the next trust-region iterate is 87, = %, and the corresponding trust—
region radius satisfies 6} , > 7idj ;.. If (3.100) is not satisfied, the step Zo will be rejected,

85, will be decreased by a factor between -y; and 7}, and (3.98) will be resolved.
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It is sufficient to perform only one successful step in the trust-region algorithm for

(3.91). If additional trust-region iterates are computed, they are required to satisfy

\I/k(éi,kn Py U*) Z g’k(éi,k + 21, Py Iu*)

and ||Py(8ix + )| < (1 — aMAy.

The conceptual algorithm is given as follows.

Algorithm 3.7.6 1. Initialization. Let 0 < 1',~;,v5 < 1 be given and set 3y = 0,

58]6 - (]. - an)ALz.
2. Compute a trial step Zy of subproblem (3.98) that satisfies (3.99).
3. Compute

W80k, Pos ) — Yil(Bok + 20y Py )
=V W80k, Prs 1) 20

t
To =

Ifrl < ', reduce &, by a factor of at least i and at most y;, and goto step 2; else

set §1y = 3o -+ 29 and choose 0 ;, > Vi6f 1.
4. Fori=1,-.:
(a) Compute a trial step %; of subproblem (3.96) that satisfies
Uil(8i g, Py 1) = Vic(Gie + 2i, s ) (3.101)

and []Pk(ézk + 21)” < (1 — Ct‘n)Ak.

(b) Set 541 = Six + Zi.

End
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We call the Oth trial iterate successful if 7§ > 7",

Lemma 3.7.7 Let assumption AMI, AM2 and AM3 hold. Let L; > 0 be a Lipschitz con-

stant such that
[V, (80 k + E20, Pus i) — VU(B0k, Pus )] 20 < L€ |50]? VE € [0, 1]

IF VY580 k, ps. i) | # O there exists constant € independent of k such that if

ot < Cl(l - nt)
Ok = ynax{Lg, 1/cy}

IV, (B0, s )] (3.102)
then the trial step 2y will be accepted.

Proof: Notice that 0 < ¢ < 1 and 0 < n* < 1imply ¢;(1 — 7*) < 1. Hence, (3.102)
implies
5}))k S CZHV\I}k‘(‘%U,k: 10*)/“1’*)”

This inequality and (3.99) yield

—V (B0, o, i) B0 > 1llVWk(S0, ooy o) Il min{ 2| Ve (305 s 1) ||, 8 1}

= c1||VU(S0k, Pus a) |60 1 (3.103)

The definition of 7§, (3.103), and (3.102) imply that, with some & € [0, 1],

1801y Py thn) + V(S0 ks Py )T 20 — UiBok + Zo, Pas )
=V (805 P o )F 20
l [V (8o + E20, pus pin) — VxS0, ps, 14)] 20
—V Wi (30.1, Prr 1hx) T 20

-1l =

Li0g
e IV UR(50k Prs )]

t

I

IA
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Therefore 7§, > n*, which means %, will be accepted. O

Remark 3.7.8 Since U}, is twice continuously differentiable with respect to &, we have that

Lk < max ”VQ\I[I\‘,(SZA/OJPM/J’*)”- (3104)

£e(0,1)
The definition (3.90) of V2U, shows that the right hand side in (3.104) depends on p, =

p(8k ) and p. = p(8y..) which in turn depends on the iteration k. Hence it is not clear

whether L, can be uniformly bounded from above.

Lemma 3.7.9 Ler assumptions AMI1, AM2 and AM3 be satisfied. There exist ¢i > 0,
independent of k and ¢, > 0 dependent on Ly, such that the steps 5,1, 1 = 1,..., computed

in Algorithm 3.7.6 satisfy

11’]6(§0’]g, Pss M*) - \Ilk'(g'i,k‘a P /J’*)

= A VEk(Sok; pr, ) | Min{ 5 |V T (S0, o2, ) ll; (1 = @) A} (3.105)
Proof: The proof is similar to the proof of Theorem 3.6.4. We distinguish two cases.
Case 1: Let

¢ (1 — "7t)
max{ Ly, 1/cs

(1 - an)Ak < } “v\l’k(é(),k;[h;u*)”

Since é(“)k = {1 — a")A, satisfies (3.102), Lemma 3.7.9 guarantees that the first trial step
18 successful,

~t 2
Sl,k —_— ZO
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The definition of a successful iterate and (3.69) yield

\I[k (§O,k; Py H*) - \I,k (gl,k: P /’L*)
>~V U(Sok, o, ) 20

= e[ V8e(Sok; per )| in{ca[[VU.(S0k, pus )|, (1 — ") A}

Since all subsequent iterates satisfy (3.101), we obtain

Wi (80,55 pos ) — Vi (Bite, P fhe)

Z ntclnvwk(§0,k; Py ﬂ*)“ Hl-ln{CQHV\Ilk(é[),k, P /*L*>”7 (1 - an)Ak}
Case 2: Let

(1 =7Y) .
1-—a" VW (¢ ws Mo )| -
(1 —ah)Ay > — {Lk,l/cg}“ k(Bok, Pss )|

Let 4y, be the trust-region radius that corresponds to the first successful trial iterate.
Lemma 3.6.3 and the fact that at the end of an unsuccessful trial iterate the trust-region

radius is reduced by at most 5 imply the inequality

t At ci(l—n")
Ok T Pmax{Ly, 1/c,

7 |V ¥k (30,k, P, 1) |- (3.106)

The definition of a successful iterate, (3.99), and (3.106) yield

W (B0, Prs ) — C(B1,ks Py fi)

> ="V Ok(Bok: Pss ) 2o

> 7|V (S0k, pu, ) | min{ca|| VUL(Sok, s, i)l éf)k}

a(l—n")
max{Lg, 1/co}

> ntclmin{c%fy; } V@1 (B0,k, s 1) I
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Since all subsequent iterates satisfy (3.101), this implies

‘Pk(&))k, P /«L*) — \Ilk(éi,ka P, ﬂ*)

al—17)
ax{Lk, 1/02}

> n'c min{cz,'y;m } VUL (S0 ks pos ) |I°

The desired result now follows with

i al-—7) }

t t t :
¢ =n'ci, ¢y =min{ e,V
1 G 2
{ " Pmax{Ly, 1/cy}

Remark 3.7.10 In algorithm 3.7.6, the first iterate 5, , is required to satisfy the sufficient
decrease condition
Wi(80ks Py n) — Wi(B1 s P 1)
> 0'eal| V(S0 pur )| min { ol VO (30,5, o )]s G5 } -

The following sequent iterates are required to satisfy

W81, Py o) = Vi(Bip1 ks P )

If we require the stronger condition

Ur(8ik, P, ) — ‘I’k(§i+1,k> P fhs)

> 77t01 “V‘Ilk(éz% P #*) ” min {CQHVLI’;C(§11J;_, Pres /‘l'*) “ &,k} ’

i = 1,2,... then the convergence theory for trust region methods guarantees that

liminf; o VUL(8; ks P, i) = 0, and under stronger assumptions even that im; o, 8; 5 =

o~ — ——

Sk« Where 8y, is a local solution of (3.91) (although not necessarily 8y . = Sj ..
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Theorem 3.7.11 Let assumptions AMI, AM2 and AM3 be satisfied. Assume that the solu-
tion 8y, satisfies
Ui (805 Prs Phs) < Wie(B1 i, Py )

There exist ¢, independent of k and & > 0 dependent on Ly, such that the steps 3y,

1=1,..., computed in Algorithm 3.7.6 satisfy
My (B, + 87) — ma (B + 8+ B
> A2+ 3TV (1 )]

s min{cy|| Z§ (&5, + 80TV (&, + 8D, (1 — a")Ax}, (3.107)
where ZE(Zy + 8%) is defined in (3.9).

Proof: By definition of (3.81) of hy, we have h;(0) = 0. Since 3y, = 0, (3.87) and (3.88)

imply
VG0, pay i) = (I = VHi(0)[V i (0)T V iy (0)] 7 V4 (0)) Vi (0).

Since Wi (8k «, Pus os) < WilS1,ks P, 1+ ), Lemma 3.7.9 implies

\Iik(0~, P N*) - \Ijk(ék‘,*a P [.1,*)
> VL0, pu, )] min{c3 [[VEL(0, pu, )il (1 = ") Ag}.

Since hi(0) = ha(8es) = 0, Vp(0,p0 ) = (0) = ml(d + &) and

Ui (8kmy Pos ) = Ok(8kn) = mi(Ey + 87 + 3 ), this implies the assertion. 0
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3.7.2 Algorithm for the Computation of the Tangential Step

The Algorithm 3.7.6 for the computation of the tangential step, was used in a constructive
proof to show that, under certain conditions the requirements (3.10), (3.11) and (3.13)
can be satisfied. For practical purposes, however, the algorithm is less useful. First, the
feasible set in (3.79) is only a small subset of the feasible set in (3.7). Therefore, using
(3.79) might slow the progress of the GTRSQP algorithm down unnecessarily. Secondly,
Algorithm 3.7.6 operates with the penalty function. The penalty parameter p, is available
theoretically, but not practically. In our example, we therefore use a different algorithm for
the computations of the tangential step.

Our algorithm used is a slight modification of the trust-region algorithm in [11] applied
to (3.7) with initial iterate 5f , = 0. The constraint || P, (3} + 3}, + 2)|| < Ay is incorporated
using a simple barrier approach [26]. That is, we consider the tangential subproblem

min m (2 + 8 + 8%, + 2) — o In(AF — | P(5h + 8, + 2)[17),
St mE(E,+ 8+ 8ty + 2) = mE (i + 3D, (3.108)
P2l < 6f 4

where ¢ is a positive scalar, the barrier parameter.

At the first successful iteration the augmented Lagrangian merit function
M(3,6,p%) = mi(&p+ &+ 8) —In(A] — | P8 + I
+6T (m§ (&, + &) + 8) — mi (G, + &)

t
+%l|MZ(:?fk + 84 8) —mi(d + D (3.109)
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satisfies

M0, 80k, Pog) — M(8] 4 GLps PO 1)

> Axp (& + §p) min {2 (B + 57), 66 b (3.110)

where ¢}, ¢} > 0 are constants independent of &k (cf. (3.13)). Note that M (0, 6¢ 4, pﬁyk) =
mh (& + 87) — . In(A?2 — || P.8%|1%). We continue the trust-region SQP iteration in [11]

until

my (2 + 85) — e In(AF — | P8
—my (T + 85 + 8ivan) TSk In(A} — || Pe(3) + §i+1,k)H2)

> M0, Gog, por) — M8k 01k Pok)
(cf. (3.13), (3.110)) and
(@ + 8% + 5001l < VErllmi(Ex + 33|

(cf. (3.11)).



Chapter 4

Optimal Control of Burgers Equation

4.1 Problem Formulation

We consider an optimal control problem governed by Burgers equation. The infinite di-

mensional optimization problem is given by

1

1 1
min —/ (y(z) — z(z))*dz + E)f‘/ u(z)*dz (4.1a)
2 Jy 2 Jy

st —vy(x) +y(x)y(z) = r(z) +u(z) z€(0,1), (4.1b)
y(0) = y(1) =0,

where a,v € R, v > 0,7 € L?(0,1) and z € L?*(0, 1) are given. Results about existence
and characterization of solutions of (4.1) and related problems can be found, e.g., in [28,
29, 30]. We consider a finite element discrimination of (4.1).

Let ¢y, -+, @, denote the basis functions for the state and let ¢y, - - -, ¥, denote the
basis functions for the control. We assume that ¢;(0) = ¢;(1) = 0,7 =1, ..., n,. The state

85
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and the control variables are approximated by

Ty Ty
uz) =D uoilz), (o) =D uh(z). 42)
=1 =1
We define
7= om)"s = (e um,)’

We require that the weak form of (4.1b),

/0 vy (@) (@) + Y(@)a(2)0(z) — r(a)ula) — ulav(@)dz v € HY(0,1),

is satisfied for y = yn, v = up and v = @1, -+, &n,. This leads to the discredited state
equations

A7+ N({y) —7— Bu=0, (4.3)
where

AeRW™ BeRw™ N(j)eR™, reR™
are matrices and vectors with entries

Ay = v [0 @i

By = ®; (x)wj (37) dz,
0

vy - (zyj@(x)) (Zymj)m(x)) (o)
o= /Or(x)gbi(x)dx.

The objective function (4.1a) is discredited as follows

1 r -~ gy —
S =2 M7 - 2) + 5a Ml “44)
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Here M, € R™*™, M, € R™*"™, 2 ¢ R", are matrices and a vector with entries
1
(My)i; = / ¢i(z)p;(z)dz,
0
1
[ w@pstaida,
01
Z = / z(z)pi(x)dz.
0

Thus, our discredited optimal control problem is of the form

min (7 — )M, (7 — 7) + Sl M,

4.5

st. Ay+ N(y) —7— B =0. (+3)

If we subdivide the interval [0, 1] into n, subinterval of length Az = 1/n, and if we
use the standard piecewise linear basis functions

(Az) ™z — (i - 1)Az) z€|(—1)Az,iAz],

di(z) =< (Az) M-z + (1+1)Az) z€ iz, 1+ DAz], i=1,--n,,
0 else
(Az) Mz — (i —2)Az) =z € [(i—2)Az, (1 —1)Az],
Yi(z) = ¢ (Az) H(—z +1iAz) z € [(i — DAz, iAz], i=1, 7y,

else

1
4 1
M, = % . € R™*™,
14 1
1 4
2 -1
12 -1
4 . Ty AT
A=+ . € R™*™, (4.6)
—~1 2 -1



( Y1Yy2 + ?J% \
—y? — 1Y — Yoz + U2
, :
N(y) = 5 —y2 | = Yio1¥ + Yillie + Y € R™

—yﬁng — Yny—2Yny,—1 + Yny—1Yn, + y(r?;,y

\ -—y?zy-l - yny—lyny
and
1 4 1
1 4 1
B - é}: c Rnyxnu’
6
1 4 1
4 1

A_\_

1
2 1
1 1
J\[u — éé_m__ E Rnuxnu.
1 4 1
1 2

4.2 Hierarchical Basis

88

(4.7)

We use the piecewise linear hierarchical basis [31, 32, 33] for the discrimination of the state

and of the state equation. Let [ € N, n, = 2!, Az = 1/n,,

Vl = Span{¢0,l) s :Ql)nz,l}>

where
(Az) Mz — (i—1)Az) ze€[(—1)Az,iAxz],
Gua(z) =3 (Az) -z + (i+1)Az) z € [idz, (i +1)Az], i=0,---
else
and

N = {0, Az, 2Az, ... 1}.

Ny,
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The hierarchical basis of V,,; is obtained by augmenting the basis of V. In particular,

where

Vippi=VieoWw

W, = span{¢;i41 1 z; € Nt \ N}

The hierarchical bases for [ = 1,2, 3 are illustrated in Figure 4.1. For comparison, Figure

4.1 also shows the standard bases consisting of the hat functions ¢q, . . ., ¢y, 1

Figure 4.1: Hierarchical and standard piecewise linear basis

Hierarchical Basis Standard Basis

T T T ¥ T T 1 T 7 T T
0.5 1 0.5F 4
o R . . . . . , ) o . : . . . \ . R
i} 041 0.2 Q.3 0.4 0.5 0.6 0.7 08 0.9 1 0 01 0.2 8.3 04 0.5 0.6 0.7 038 0.8 1
X X
1 T 1 T T
o5} 0sh .
0 . : \ \ . . , . 0 . , \ . . . A .
i} .t 0.2 03 0.4 0.3 0.8 0.7 0.8 0.9 1 il 0.1 0.2 4.3 04 @5 0.6 0.7 0.8 0.9 1
1 x . 1 . . X . .
[12:1 4 0.5p =
0 . . ; . . \ . \ . . . , . . \ f
s 61 02 03 04 05 06 07 08 03 1+ o o641 a4z 03 04 05 08 07 08 08 A
X %

Ify = Zfl:o by € V), then the coefficients § = (yo, .

.., yx)T of its representation

y = Zio yspiy in the standard basis and the coefficients 77 = (yff,... . yH)T of its

! . : . .
representation y = Zf:(, yﬂ)ﬁ in the hierarchical basis are related by

g = Tyy.
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For example for [ = 2,

1 00 0 0
-2 1 =3 0 0
Tg=] 0 0 1 0 0
0 0 —f 1 —1%
0 0 0 0 1
In particular,
Aj+ N(y) —7— B
= Ty AT;'§ + TP NI ™) — Ty 7 — Ty B, (4.8)
1
S — 2" M,(F - 2) + %ﬁf’Muﬁ
1 o
= -2-(,773' — T ) T M, T (5% — TuZ) + %177 M. (4.9)

b

(cf. (4.3), (4.4)). In practice one never forms T 7 ATy, T' N(Tg i), etc., but instead
works with A, N(7), etc. and applies the mappings 7 — 77 = Tyyand 7 — 7 = T 5.
These can be computed efficiently using the algorithms discussed, e.g., in [31, 32].

We set

(7)) = T AT + T N(T;'g") — T;"F -~ Tg" B,  (4.10)

T 1, . 1 a .
f#, @) = —z-(yH — T T M, T (77 — Twz) + —2~uT]\4uu, (4.11)

and we consider the discredited optimal control problem

—
']y

min f (7", @)

4.12
st i, 1) =0. (+12)

In the following we will consider the discredited problem (4.12) for a fixed fine grid of

level L as our given problem and we will omit the # g for simplicity.
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4.3 Problem Structure

For problems like (4.5) the optimization variables group into states i and controls u. This
grouping of variables as well as additional structure can be used in optimization algorithms
(see, e.g., [20, 21]). We briefly review the problem structure here to indicate how it is used
in our implementation of the GTRSQP algorithm.

The Jacobian Ve(y, u)! of ¢(y,u) is given by

VC(y, U)T = (Cy <y: u) Cy (ly* U))a

where ¢, (y,u) and ¢,(y, u) are the partial Jacobians of ¢(y,u) with respect to y and u,

respectively. If ¢, (y, u) is invertible, then the columns of

Zy.u) = ( ) . edyr) > (4.13)

span the null-space of Vc(y,u)”. This null-space representation is used in the context of
our application (4.5).

With the partitioning of the optimization variables into y and v, the Lagrangian reads
l(y.uw,A) = fy,u) + ATe(y, u)
and its partial gradients are given by
Vol u, A = f,(y,u) + ¢, (y,u)" A

and

Vul(y,u, A) = fuly,u) + ey, u)" A
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If we assume that ¢, (y, u) is invertible, a Lagrange multiplier estimate can be computed by

solving the so-called adjoint equation
fyly,u) + cy(y,u)T)\ =0. (4.14)

With this Lagrange multiplier estimate and (4.13) we have

vyl(yo Uu, A)

Zi(y, u)"
W) (Vul(y,u,k)

) = V. l(y,u, A).
In our particular application where the objective and constraint functions are given by

(4.10), (4.11), we obtain

V?/l(ya U‘, A)

Zily,u)* =V, l(y,u,\) = aMu— BTT7 )\ 4.15
k’(y U) ( vul(y!u':)\> ) (y ¢ > “ ! i ( )

. i !
In our application the vectors y € R™, u € R™ represent functions Z?:o ylcﬁﬁ €

H}0,1) and >0 up; € L2(0, 1), respectively. Therefore, we do not use the Euclidean

i

norm to measure their lengths, but the following weighted norms:
lullz: = u" My, (4.16)
where M, is given by (4.7), and
Il = v T ATy, (4.17)

where A, is given by (4.6) with v = 1.

4.4 Model Construction

The problem (4.12) to solve is a problem with n,, = 2L — 1 state variables and n,, = 28 +1

control variables. At iteration £ a model is generated by selecting a coarse grid for the
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states. It would also be possible to reduce the control space, but in this example we have

chosen to keep the original control space. Hence the projection and reduction operators are

Y y
1 1

Furthermore, P} = PY and R} = RY.

given by

Suppose the coarse grid consists of grid points :cfl < .- [If a hierarchical basis
™y

is used, then the restriction and prolongation operators R, PY satisfy R} = (P})T and

Pl e R™ ™ is the matrix with

0 else.

R
(sz)ij:{ e 4.18)

The models of the objective and constraint functions are given by
mi (9, u) = f(PLg, )

and

mi (G, u) = (PY) e(PYg,u), (4.19)
respectively. We set
(G w) = M (G, ur) + Nemg (e, w)
= F(PYiwe) + AL (BT c(PYgr, w)- (4.20)

Clearly, our model inherits all differentiability properties from the original problem. If

there exists a bounded subset € such that (v, ug) € £ for all k, then assumptions Al, A2,
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AM1, AM?2 are satisfied. The prolongation P} given by (4.18) satisfies | P/§| > ||§}| for
all . Hence AM3 1s satisfied with x5, = 1.

If yp. = PY9y, then (4.19) and (4.20) imply

(PO elyr,ur) = (P PV, ur) = mi(Gx, ur),

(Pg)Tvyc(yk: Uk)P;g = ngi(gk, Uug).
Similarly, if yx = Pk, Ax = P,fjxk, then

(POTVol(zi M) = (PO (fy (v, we) + Vye(yr, ur) M)
— (P (FPEG ) + VeV, u) P

= V@mi(ﬁk: Ur).

Thus, if yx = P g, Assumptions AM7 and AM10 are automatically satisfied independent
of the coarse grid chosen. Note that the special property (4.18) of P! is not used, i.e., As-
sumptions AM7 and AM10 are also automatically satisfied if we do not use the hierarchical
basis.

In the previous paragraph we have assumed that y, = PYg. Since 7 = Ry, the
identity yp, = P! implies that

ur = P By, (4.21)

Thus, in general, if we assume y; = P}, then the grid constructed in iteration k£ must
contain the grid constructed in iteration & — 1.
The model, i.e., the coarse grid needs to be chosen such that Assumptions AMS, AM6

and AMS8, AM9 are satisfied. We select our coarse grid so that AM®6 is enforced and we
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apply a heuristic that attempts to satisfy AMS. Currently, the conditions AM8 and AM9
are not explicitly included in our construction of the coarse grid, but are monitored in our
implementation of the GTRSQP algorithm.

We first discuss how we construct our coarse grid to ensure AM6. Assumption AM6

requires that
lle(we, wl < vellmi (Gn, we)ll-
Let v, be given (in our computations we use . = 2). To satisfy Assumption AM6, we

select the smallest subset of nodes G, such that
Y

> (elysw))} > M

2
S Ve
"y
The coarse grid G» used in iteration k satisfies G¢, C G,x. (Here G,,x is the set of indices
g nk ni ny Ty

of nodes used in the coarse grid of iteration £.) Hence,

|e(yr, wn) I
Z (c(yn, u))? > 1—2
:CiEGnk ,Yc
Y
This condition is equivalent to |[c(y, ug) || < Vel P c(yk, ur)||- Thus, since y, = P;J) and
mi (e, ux) = P e(yr, ui), AMS is satisfied.

To enforce Assumption AMS, we proceed as follows. Recall (cf. (4.15)) that our criti-

cality measure for the original problem is given by

X (Yrs i) = |Vl (Ui, wi, AL) | 12,

where X;‘“e is the solution of the adjoint equation (4.14) (on the fine grid), i.e.,

ey (Y wr) T AR = =V, f (s ua).-
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Let ) be the Lagrange multiplier estimate obtained by solving the adjoint equation

corresponding to the coarse grid, i.e, let Ay, solve
(P (P, we) " P Ak = —(P)T (P wa).
The criticality measure for the model is given by
Xa! (s ) = ||Vl (B, s i) || 2
Since v, = P,

X (Ui wi) — X3 (Gr, )

IV f (i ) + Cu(ie ) A 22 = |V f (W ) + (s )T B Ml 22,

l

A

< New(yr ur) Tl A — PYAG Lo

Therefore, we want our coarse grid to be such that the adjoint solution on the coarse grid
can capture most of the features of the adjoint solution on the fine grid. We apply the
following heuristic. Given A\{"® and a parameter 7, > 1 ( in our computations we use
¥y = 2), we select smallest subset of nodes G;\u; such that

™ ey » ETE

22
€, x
Ty

The coarse grid an; used in iteration k satisfies G;\Lk C an;. Hence,
Y

Z ()\zne)? > NAQHEHQ’

52
1EG % (yX
"y

which is equivalent to || Afre|| < 7, || RIS
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Let G,nz;_l be the set of indices of nodes used in the coarse grid of iteration k£ — 1. To
enforce (4.21), the indices of nodes used in the coarse grid of iteration & have to satisfy

an;—l C an;. To compute the coarse grid for iteration k, we successively subdivide the

A

intervals, if necessary, until all grid points with indices in G‘i'ﬁ U Gr',n?,3

UG, 5 are contained
Y
in the coarse grid.
As we have stated before, Assumptions AMS8, AM9 are difficult to enforce, since they

depend on the computed trial step 3;. These assumptions currently do not enter the con-

struction of the coarse grid, but are monitored during the iteration.

4.5 Numerical Test

We consider the optimal control problem (4.1) with the desired state

) = { 1 in (0,1],

0 otherwise,

right hand side r(z) = 1 and
a=10"" v=10"2

For the discrimination we use n, = 128 subintervals. The desired state and solution of
Burgers equation with u = 0 are shown in Figure 4.2 and Figure 4.3 respectively.

We first apply the standard trust region SQP (TRSQP) algorithm to the problem. The
TRSQP algorithm converges within 17 iterations and the convergence behavior is displayed

in Table 4.1. In Table 4.1, k denotes the iteration number, fr = f(¥k, ur), & = c(Yx, ur),
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Figure 4.2: Desired state

0.8t

0.6t

0.4t

0.2r

Vi = (Yl (yr, ur, M) T, Vol (i wr, M) T), ) denotes the quasi-normal step, s}, the tan-
gential step, A, denotes the trust region radius, p; denotes the penalty parameter, and 7.
denotes the number of conjugate gradient iterations executed for the computation of tan-

gential step. Moreover,

lslEncze = I(sk)ullzn + I(sk)ullZe

(cf. (4.16), (4.17)). In Tables 4.1 and 4.2, we use ||s}|| as a short hand for ”SZ”HéXLz and
l[sill for |Isillzaxz2s I VIl as a short hand for || Vii|| g 2.
The computed state and control are shown in Figure 4.4 and Figure 4.5, respectively.

The convergence behavior for our generalized trust region SQP (GTRSQP) algorithm is



Table 4.1: Convergence history of the SQP method
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Figure 4.3: Solution of Burgers equation with u = 0

shown in Table 4.2. The GTRSQP algorithm converges within 25 iterations. The notation
used in the header of Table 4.2 is identical to that used in Table 4.1. In addition, nfj denotes
the number of grid points used in the model of the GTRSQP iteration k, iy denotes the
number of SQP iterations required for the computation of the tangential step s}, and i, is
the cumulative number of CG iterations executed in the SQP algorithm for the computation
of the tangential step sj,.

We monitor the ratio

Igg (PIVe(z) TV e(zi) Py — Vs (2:)TVme (24)) §k|
Apl|55l?

4.22)



Table 4.2: Convergence history of the GSQP method
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king | fe | lewllee | VG | Ak [l sl Isill | o | ir | &
0| 1 |244e-1]|523e-1| 1.72e+0 | 1.00e+5 11111
0| 1 ]244e-1|523e-1| 1.72e+0 | 2.00e+5 | 9.53e+0 | 8.04e+0 |96 | 1 | 1
1| 2 11531 1.71e-1 | 8.00e-1 | 1.98¢e+0 | 1.17e+0 | 341e+0 |96 | 1 | 2
1] 2 |153e-1]1.71e-1| 8.00e-1 |3.97e+0| 1.17e+0 | 1.23e+0 196 1 | 1
2 { 4 | 1.46e-1]9.50e-2 | 9.31e-1 | 7.94e+0 | 2.29e+0 | 3.16e+0 | 96 | 11 | 19
3| 8 | 481e-2 | 3.80e-2 | 1.18+0 | 2.02e+0 | 8.15¢e-1 | 2.32e+0 196 | 9 | 25
31 8 |4.81e-2|3.80e-2| 1.18e+0 | 1.15e+0 | 8.15e-1 | 2.12e+0 {96 | 2 | 4
31 8 |48le-2|3.80e-2|1.18+0 | 1.15e+0 | 8.15e-1 | 4.17e-1 {196 | 2 | 4
4 |12 ]5.07e-2|391e-2 | 7.15¢e-1 | 231e4+0 | 1.13e+0 | 1.14e+0 | 96 | 2 | 8
5 114 | 4.61e-2 | 254e-2 | 1.50e+0 | 231e+0 | 9.03e-1 | 1.13e+0 |96 | 4 | 5
6 | 16| 4.22e-2 | 1.80e-2 | 1.58e+0 | 2.31e4+0 | 6.78e-1 | 8.46e-1 |96 | 2 | 4
7 {18 | 3.71e-2 | 1.98¢e-2 | 4.02e-1 | 4.62e+0 | 5.07e-1 | 520e-1 {96 | 2 | 6
8 | 21 |337e-2|1.30e-2 | 4.60e-1 | 1.13e+0 | 4.44e-1 | 1.28e+0 |96 | 2 | 8
8 | 21 | 3.37e-2 | 1.30e-2 | 4.60e-1 | 2.26e+0 | 4.44e-1 | 2.12e-1 {96 | 2 | 6
9 | 26 | 3.08e-2 | 7.60e-3 | 4.92e-1 | 2.26e+0 | 2.63e-1 | 426e-1 | 96| 1 | 4
10| 29 | 2.81e-2 | 6.67e-3 | 4.79e-1 | 2.26e+0 | 2.38e-1 | 3.03e-1 {96 | 1 | 4
11133 ] 2.6le2|621e3 | 2.27e-1 | 2.26e+0 | 2.34e-1 | 2.69¢-1 {96 | 1 | 4
12 1 37 | 2.40e-2 | 4.69¢e-3 | 2.15e-1 | 4.53e+0 | 1.65e-1 | 2.12e-1 |96 | 1 | 4
13 141 | 2.27e-2 | 4.16e-3 | 1.92e-1 | 4.53e+0 | 1.26e-1 | 6.24e-1 |96 | 1 | 5
14 1 45 | 1.94e-2 | 4.34e-3 | 1.31e-1 | 4.53e+0 | 1.13e-1 | 4.63e-1 |96 | 1 | 4
15148 | 1.74e-2 | 3.90e-3 | 3.48¢e-2 | 9.06e+0 | 1.36e-1 | 3.63e-1 {96 | 1 | 5
16 | 51 | 1.59e-2 | 2.94e-3 | 2.76e-2 | 1.81e+1 | 8.82e-2 | 9.45¢-1 {96 | 1 | ©
17 | 54 | 1.2de-2 | 2.87e-3 | 1.69e-2 | 3.62e+1 | 8.71e-2 | 1.51e+0 ] 96 | 2 | 11
18 | 58 | 8.69e-3 | 1.68e-3 | 6.56e-3 | 7.25¢+1 | 6.18e-2 | 2.66e+0 | 96 | 2 | 15
19 | 61 | 5.18¢-3 | 5.70e-4 | 2.79e-3 | 1.45e+2 | 1.62e-2 | 2.96e+0 | 96 | 2 | 20
20 | 63 | 3.60e-3 | 3.22e-4 | 1.33e-3 | 2.90e+2 | 1.44e-2 | 241e+0 |96 | 2 | 23
21|64 | 3.18¢e-3 | 1.90e-4 | 6.35¢-4 | 6.21e+0 | 6.20e-3 | 1.13e+0 | 96 | 1 | 27
21 | 64 | 3.18¢-3 | 1.90e-4 | 6.35¢-4 | 1.24e+1 | 6.20e-3 | 9.05¢-3 |96 | 1 | 6
22166 | 3.18e-3 | 1.69¢-4 | 429-4 | 2.48e+1 | 6.67e-3 | 2.22e-2 | 96 | 1

23| 68 | 3.18e-3 | 1.32e-4 | 3.59¢-4 | 4.96e+1 | 4.50e-3 | 7.18e-2 |96 | 2 | 11
24 171 | 3.18e-3 | 9.61e-5 | 1.86e-4 | 9.93e+1 | 3.20e-3 | 2.08e-1 |96 | 1 | 14
25|74 | 3.16e-3 | 5.27e-5 | 9.67e-5 | 9.93e+1 | 2.18e-3 | 4.36e-1 |96 | 1 | 22
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Figure 4.4: Optimal state y
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(4.23)

at each iteration and they are given in Figure 4.6 and 4.7.

The grid points used to construct the models are shown in Figure 4.8. Finally, Figure
4.9 and Figure 4.10 display the state and control at each iteration respectively.

Our numerical results indicate the feasibility of our approach. Our GTRSQP algorithm
reaches the required tolerances and the model in the final GTRSQP iteration is based on
only 74 grid points compared to 128 grid points in the fine grid. However, in the SQP
sub~iterations of the GTRSQP algorithm more CG iterations are executed (see column %,

in Table 4.2) than in the ‘pure’ SQP method applied to the fine grid problem (see column
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Figure 4.5: Optimal control u
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i, in Table 4.1). These CG iterations are an indicator of the overall performance of the
algorithms. Note that in the GTRSQP algorithm each CG sub-iteration is cheaper, since it
requires coarse grid operations, than each CG sub-iteration in Table 4.1. Given the relative
sizes of the problems and the relative number of CG iterations, Tables 4.2 and 4.1 indicate
that the performance of both algorithms measured in flops is similar. Further research in
the implementation of the tangential step algorithm inside the GTRSQP algorithm (which
is where the CG iterations are executed) is needed to determine if this step can be executed
more efficiently. Moreover, our model construction described in Section 4.4 is somewhat
ad-hoc. Improved models clearly will boost the performance of the GTRSQP methods.

Both issues are part of future research.
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Figure 4.6: Ratio in (4.22)
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Figure 4.7: Ratio in (4.23)
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Figure 4.8: Grid points used to construct the model in GTRSQP iteration k
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Figure 4.9: Computed state in GTRSQP iteration &k
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Chapter 5

Summary and Future Work

We have presented and analyzed a class of generalized trust region sequential quadratic
programming (GTRSQP) algorithms for equality constrained optimization. The GTRSQP
algorithms solve the original equality constrained optimization problem by solving a se-
quence of equality constrained optimization model problems. The optimization variable
space for these model problems can be different from that of the original problem. Typ-
ically, the dimension of the optimization variable space for the model problems is much
smaller than that of the original problem. In this case, the small model problems are easier
to solve.

The design of our GTRSQP algorithm follows that of composite step trust region SQP
(TRSQP) algorithms. Several algorithmic modifications were necessary, however, because
the model constraints in our subproblems may be nonlinear. These modifications primarily

concern the formulation of the tangential step and of the predicted reduction. In addition,
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since we allow non-Taylor approximation based models, we have to ensure a suitable bound
on the difference between actual and predicted reduction.

We have proven a first order global convergence result for the GTRSQP algorithm,
extending the analysis of [11]. Our first order global convergence result for the GTRSQP
algorithm applied to TRSQP allows one to relax the condition that the so-called tangential
step lies in the null-space of the linearized constraints. This is useful in TRSQP methods
when the linearized constraints are solved by iterative methods.

Our GTRSQP algorithm has been applied to an optimal control problem governed by
Burgers equation in which the models are generated by coarsening of the original grid.

Our convergence analysis requires several assumptions on the model. Possibly the most
critical one is an assumption on the bound on the difference between actual and predicted
reduction (see AM4). Further investigations into ways to weaken this assumption or how
to enforce this assumption in concrete applications would be useful. In this context, the
exploration of an extension of the SQP filter algorithm [17, 18] could be interesting.

Our GTRSQP algorithm allows great flexibility in the computation of the quasi-normal
and the tangential step. The algorithms used for these tasks, especially the algorithm for
the computation of the tangential step, can greatly influence the overall performance of the
GTRSQP algorithm. More experiments with different algorithms for quasi-normal and the
tangential step computation would be interesting.

Finally, the application of our algorithms to different problems and the generation of

different models, e.g, through the use of reduced basis approaches, should be investigated.
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