SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models

dc.contributor.authorZafar, Hamimen_US
dc.contributor.authorTzen, Anthonyen_US
dc.contributor.authorNavin, Nicholasen_US
dc.contributor.authorChen, Kenen_US
dc.contributor.authorNakhleh, Luayen_US
dc.date.accessioned2017-09-24T04:09:13Zen_US
dc.date.available2017-09-24T04:09:13Zen_US
dc.date.issued9/19/2017en_US
dc.date.updated2017-09-24T04:09:13Zen_US
dc.description.abstractAbstract Single-cell sequencing enables the inference of tumor phylogenies that provide insights on intra-tumor heterogeneity and evolutionary trajectories. Recently introduced methods perform this task under the infinite-sites assumption, violations of which, due to chromosomal deletions and loss of heterozygosity, necessitate the development of inference methods that utilize finite-sites models. We propose a statistical inference method for tumor phylogenies from noisy single-cell sequencing data under a finite-sites model. The performance of our method on synthetic and experimental data sets from two colorectal cancer patients to trace evolutionary lineages in primary and metastatic tumors suggests that employing a finite-sites model leads to improved inference of tumor phylogenies.en_US
dc.identifier.citationZafar, Hamim, Tzen, Anthony, Navin, Nicholas, et al.. "SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models." (2017) BioMed Central: http://dx.doi.org/10.1186/s13059-017-1311-2.en_US
dc.identifier.doihttp://dx.doi.org/10.1186/s13059-017-1311-2en_US
dc.identifier.urihttps://hdl.handle.net/1911/97745en_US
dc.language.isoengen_US
dc.publisherBioMed Centralen_US
dc.rightsThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.en_US
dc.rights.holderThe Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleSiFit: inferring tumor trees from single-cell sequencing data under finite-sites modelsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13059_2017_Article_1311.pdf
Size:
2.12 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: