Sulfur Vacancy Related Optical Transitions in Graded Alloys of MoxW1-xS2 Monolayers

dc.citation.articleNumber2302326en_US
dc.citation.issueNumber11en_US
dc.citation.journalTitleAdvanced Optical Materialsen_US
dc.citation.volumeNumber12en_US
dc.contributor.authorGhafariasl, Mahdien_US
dc.contributor.authorZhang, Tianyien_US
dc.contributor.authorWard, Zachary D.en_US
dc.contributor.authorZhou, Daen_US
dc.contributor.authorSanchez, Daviden_US
dc.contributor.authorSwaminathan, Venkataramanen_US
dc.contributor.authorTerrones, Humbertoen_US
dc.contributor.authorTerrones, Mauricioen_US
dc.contributor.authorAbate, Yohannesen_US
dc.date.accessioned2024-07-25T20:55:15Zen_US
dc.date.available2024-07-25T20:55:15Zen_US
dc.date.issued2024en_US
dc.description.abstractEngineering electronic bandgaps is crucial for applications in information technology, sensing, and renewable energy. Transition metal dichalcogenides (TMDCs) offer a versatile platform for bandgap modulation through alloying, doping, and heterostructure formation. Here, the synthesis of a 2D MoxW1-xS2 graded alloy is reported, featuring a Mo-rich center that transitions to W-rich edges, achieving a tunable bandgap of 1.85 to 1.95 eV when moving from the center to the edge of the flake. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy showed the presence of sulfur monovacancy, VS, whose concentration varied across the graded MoxW1-xS2 layer as a function of Mo content with the highest value in the Mo-rich center region. Optical spectroscopy measurements supported by ab initio calculations reveal a doublet electronic state of VS, which is split due to the spin-orbit interaction, with energy levels close to the conduction band or deep in the bandgap depending on whether the vacancy is surrounded by W atoms or Mo atoms. This unique electronic configuration of VS in the alloy gave rise to four spin-allowed optical transitions between the VS levels and the valence bands. The study demonstrates the potential of defect and optical engineering in 2D monolayers for advanced device applications.en_US
dc.identifier.citationGhafariasl, M., Zhang, T., Ward, Z. D., Zhou, D., Sanchez, D., Swaminathan, V., Terrones, H., Terrones, M., & Abate, Y. (2024). Sulfur Vacancy Related Optical Transitions in Graded Alloys of MoxW1-xS2 Monolayers. Advanced Optical Materials, 12(11), 2302326. https://doi.org/10.1002/adom.202302326en_US
dc.identifier.digitalSulfur-Vacancyen_US
dc.identifier.doihttps://doi.org/10.1002/adom.202302326en_US
dc.identifier.urihttps://hdl.handle.net/1911/117504en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license.  Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleSulfur Vacancy Related Optical Transitions in Graded Alloys of MoxW1-xS2 Monolayersen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sulfur-Vacancy.pdf
Size:
8 MB
Format:
Adobe Portable Document Format