Alignment and nonlinear elasticity in biopolymer gels

dc.citation.firstpage42710en_US
dc.citation.issueNumber4en_US
dc.citation.journalTitlePhysical Review Een_US
dc.citation.volumeNumber91en_US
dc.contributor.authorFeng, Jingchenen_US
dc.contributor.authorLevine, Herberten_US
dc.contributor.authorMao, Xiaomingen_US
dc.contributor.authorSander, Leonard M.en_US
dc.contributor.orgCenter for Theoretical Biological Physicsen_US
dc.date.accessioned2016-06-10T19:01:57Zen_US
dc.date.available2016-06-10T19:01:57Zen_US
dc.date.issued2015en_US
dc.description.abstractWe present a Landau-type theory for the nonlinear elasticity of biopolymer gels with a part of the order parameter describing induced nematic order of fibers in the gel. We attribute the nonlinear elastic behavior of these materials to fiber alignment induced by strain. We suggest an application to contact guidance of cell motility in tissue. We compare our theory to simulation of a disordered lattice model for biopolymers. We treat homogeneous deformations such as simple shear, hydrostatic expansion, and simple extension, and obtain good agreement between theory and simulation. We also consider a localized perturbation which is a simple model for a contracting cell in a medium.en_US
dc.identifier.citationFeng, Jingchen, Levine, Herbert, Mao, Xiaoming, et al.. "Alignment and nonlinear elasticity in biopolymer gels." <i>Physical Review E,</i> 91, no. 4 (2015) American Physical Society: 042710. http://dx.doi.org/10.1103/PhysRevE.91.042710.en_US
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevE.91.042710en_US
dc.identifier.urihttps://hdl.handle.net/1911/90493en_US
dc.language.isoengen_US
dc.publisherAmerican Physical Societyen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.titleAlignment and nonlinear elasticity in biopolymer gelsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevE.91.042710.pdf
Size:
543.93 KB
Format:
Adobe Portable Document Format
Description: