Battery metal recycling by flash Joule heating
dc.citation.articleNumber | eadh5131 | en_US |
dc.citation.issueNumber | 39 | en_US |
dc.citation.journalTitle | Science Advances | en_US |
dc.citation.volumeNumber | 9 | en_US |
dc.contributor.author | Chen, Weiyin | en_US |
dc.contributor.author | Chen, Jinhang | en_US |
dc.contributor.author | Bets, Ksenia V. | en_US |
dc.contributor.author | Salvatierra, Rodrigo V. | en_US |
dc.contributor.author | Wyss, Kevin M. | en_US |
dc.contributor.author | Gao, Guanhui | en_US |
dc.contributor.author | Choi, Chi Hun | en_US |
dc.contributor.author | Deng, Bing | en_US |
dc.contributor.author | Wang, Xin | en_US |
dc.contributor.author | Li, John Tianci | en_US |
dc.contributor.author | Kittrell, Carter | en_US |
dc.contributor.author | La, Nghi | en_US |
dc.contributor.author | Eddy, Lucas | en_US |
dc.contributor.author | Scotland, Phelecia | en_US |
dc.contributor.author | Cheng, Yi | en_US |
dc.contributor.author | Xu, Shichen | en_US |
dc.contributor.author | Li, Bowen | en_US |
dc.contributor.author | Tomson, Mason B. | en_US |
dc.contributor.author | Han, Yimo | en_US |
dc.contributor.author | Yakobson, Boris I. | en_US |
dc.contributor.author | Tour, James M. | en_US |
dc.contributor.org | Welch Institute for Advanced Materials | en_US |
dc.contributor.org | NanoCarbon Center | en_US |
dc.contributor.org | Applied Physics Program | en_US |
dc.contributor.org | Smalley-Curl Institute | en_US |
dc.date.accessioned | 2024-05-03T15:51:21Z | en_US |
dc.date.available | 2024-05-03T15:51:21Z | en_US |
dc.date.issued | 2023 | en_US |
dc.description.abstract | The staggering accumulation of end-of-life lithium-ion batteries (LIBs) and the growing scarcity of battery metal sources have triggered an urgent call for an effective recycling strategy. However, it is challenging to reclaim these metals with both high efficiency and low environmental footprint. We use here a pulsed dc flash Joule heating (FJH) strategy that heats the black mass, the combined anode and cathode, to >2100 kelvin within seconds, leading to ~1000-fold increase in subsequent leaching kinetics. There are high recovery yields of all the battery metals, regardless of their chemistries, using even diluted acids like 0.01 M HCl, thereby lessening the secondary waste stream. The ultrafast high temperature achieves thermal decomposition of the passivated solid electrolyte interphase and valence state reduction of the hard-to-dissolve metal compounds while mitigating diffusional loss of volatile metals. Life cycle analysis versus present recycling methods shows that FJH significantly reduces the environmental footprint of spent LIB processing while turning it into an economically attractive process. | en_US |
dc.identifier.citation | Chen, W., Chen, J., Bets, K. V., Salvatierra, R. V., Wyss, K. M., Gao, G., Choi, C. H., Deng, B., Wang, X., Li, J. T., Kittrell, C., La, N., Eddy, L., Scotland, P., Cheng, Y., Xu, S., Li, B., Tomson, M. B., Han, Y., … Tour, J. M. (2023). Battery metal recycling by flash Joule heating. Science Advances, 9(39), eadh5131. https://doi.org/10.1126/sciadv.adh5131 | en_US |
dc.identifier.digital | sciadv-adh5131 | en_US |
dc.identifier.doi | https://doi.org/10.1126/sciadv.adh5131 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/115629 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | AAAS | en_US |
dc.rights | Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder. | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | en_US |
dc.title | Battery metal recycling by flash Joule heating | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | publisher version | en_US |
Files
Original bundle
1 - 1 of 1