Systematically probing the bottom-up synthesis of AuPAMAM conjugates for enhanced transfection efficiency
dc.citation.articleNumber | 24 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.journalTitle | Journal of Nanobiotechnology | en_US |
dc.citation.volumeNumber | 14 | en_US |
dc.contributor.author | Figueroa, Elizabeth R. | en_US |
dc.contributor.author | Stephen Yan, J. | en_US |
dc.contributor.author | Chamberlain-Simon, Nicolette K. | en_US |
dc.contributor.author | Lin, Adam Y. | en_US |
dc.contributor.author | Foster, Aaron E. | en_US |
dc.contributor.author | Drezek, Rebekah A. | en_US |
dc.date.accessioned | 2016-08-11T13:49:06Z | en_US |
dc.date.available | 2016-08-11T13:49:06Z | en_US |
dc.date.issued | 2016 | en_US |
dc.date.updated | 2016-08-11T13:49:05Z | en_US |
dc.description.abstract | Background: Gold nanoparticles (AuNPs) have shown great promise as scaffolds for gene therapy vectors due to their attractive physiochemical properties which include biocompatibility, ease of functionalization via the nearly covalent gold-sulfur dative bond, and surface plasmon optical properties. Previously, we synthesized stable AuNP-polyamidoamine (AuPAMAM) conjugates and showed their success in vitro as non-viral gene delivery vectors. Results: In this study, we systematically perturbed each component of the AuPAMAM conjugates and analyzed the resulting effect on transfection efficiency. Due to the modular, bottom-up nature of the AuPAMAM synthesis, we were able to probe each step of the fabrication process. The relationship between each conjugation parameter and the function of the final vector were investigated. More than fourfold enhanced transfection efficiency was achieved by modifying the PAMAM concentration, PAMAM core chemistry, PAMAM terminus chemistry, and self-assembled monolayer composition of the AuPAMAM conjugates. Conclusions: This work suggest that AuPAMAM synthesis platform is a promising non-viral gene therapy approach and highlights the importance of inspecting the role of each individual constituent in all nanotechnology hybrid materials. | en_US |
dc.identifier.citation | Figueroa, Elizabeth R., Stephen Yan, J., Chamberlain-Simon, Nicolette K., et al.. "Systematically probing the bottom-up synthesis of AuPAMAM conjugates for enhanced transfection efficiency." <i>Journal of Nanobiotechnology,</i> 14, no. 1 (2016) BioMed Central: http://dx.doi.org/10.1186/s12951-016-0178-9. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1186/s12951-016-0178-9 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/91215 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | BioMed Central | en_US |
dc.rights | This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.title | Systematically probing the bottom-up synthesis of AuPAMAM conjugates for enhanced transfection efficiency | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | publisher version | en_US |