Log minimal model program for the moduli space of stable curves: the first flip

Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
Department of Mathematics, Princeton University
Abstract

We give a geometric invariant theory (GIT) construction of the log canonical model M¯g(α) of the pairs (M¯g,αδ) for α∈(7/10–ϵ,7/10] for small ϵ∈Q+. We show that M¯g(7/10) is isomorphic to the GIT quotient of the Chow variety of bicanonical curves; M¯g(7/10−ϵ) is isomorphic to the GIT quotient of the asymptotically-linearized Hilbert scheme of bicanonical curves. In each case, we completely classify the (semi)stable curves and their orbit closures. Chow semistable curves have ordinary cusps and tacnodes as singularities but do not admit elliptic tails. Hilbert semistable curves satisfy further conditions; e.g., they do not contain elliptic chains. We show that there is a small contraction Ψ:M¯g(7/10+ϵ)→M¯g(7/10) that contracts the locus of elliptic bridges. Moreover, by using the GIT interpretation of the log canonical models, we construct a small contraction Ψ+:M¯g(7/10−ϵ)→M¯g(7/10) that is the Mori flip of Ψ.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Hassett, Brendan and Hyeon, Donghoon. "Log minimal model program for the moduli space of stable curves: the first flip." Annals of Mathematics, 177, (2013) Department of Mathematics, Princeton University: 1-58. http://dx.doi.org/10.4007/annals.2013.177.3.3.

Has part(s)
Forms part of
Rights
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Link to license
Citable link to this page