Spectral Properties of Effective Dynamics from Conditional Expectations

Abstract

The reduction of high-dimensional systems to effective models on a smaller set of variables is an essential task in many areas of science. For stochastic dynamics governed by diffusion processes, a general procedure to find effective equations is the conditioning approach. In this paper, we are interested in the spectrum of the generator of the resulting effective dynamics, and how it compares to the spectrum of the full generator. We prove a new relative error bound in terms of the eigenfunction approximation error for reversible systems. We also present numerical examples indicating that, if Kramers–Moyal (KM) type approximations are used to compute the spectrum of the reduced generator, it seems largely insensitive to the time window used for the KM estimators. We analyze the implications of these observations for systems driven by underdamped Langevin dynamics, and show how meaningful effective dynamics can be defined in this setting.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Nüske, Feliks, Koltai, Péter, Boninsegna, Lorenzo, et al.. "Spectral Properties of Effective Dynamics from Conditional Expectations." Entropy, 23, no. 2 (2021) MDPI: https://doi.org/10.3390/e23020134.

Has part(s)
Forms part of
Rights
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Citable link to this page