Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy

dc.citation.articleNumber100230en_US
dc.citation.journalTitlePhotoacousticsen_US
dc.citation.volumeNumber21en_US
dc.contributor.authorHu, Lienen_US
dc.contributor.authorZheng, Chuantaoen_US
dc.contributor.authorZhang, Minghuien_US
dc.contributor.authorZheng, Kaiyuanen_US
dc.contributor.authorZheng, Jieen_US
dc.contributor.authorSong, Zhanweien_US
dc.contributor.authorLi, Xiuyingen_US
dc.contributor.authorZhang, Yuen_US
dc.contributor.authorWang, Yidingen_US
dc.contributor.authorTittel, Frank K.en_US
dc.date.accessioned2021-02-08T18:37:58Zen_US
dc.date.available2021-02-08T18:37:58Zen_US
dc.date.issued2021en_US
dc.description.abstractA wavelength-locked light-induced thermo-elastic spectroscopy (WL-LITES) gas sensor system was proposed for long-distance in-situ methane (CH4) detection using a fiber-coupled sensing probe. The wavelength-locked scheme was used to speed the sensor response without scanning the laser wavelength across the CH4 absorption line. A small-size piezoelectric quartz tuning fork (QTF) with a wide spectral response range was adopted to enhance the photo-thermal signal. The optical excitation parameters of the QTF were optimized based on experiment and simulation for improving the signal-to-noise ratio of the LITES technique. An Allan deviation analysis was employed to evaluate the limit of detection of the proposed sensor system. With a 0.3 s lock-in integration time and a ∼ 100 m optical fiber, the WL-LITES gas sensor system demonstrates a minimum detection limit (MDL) of ∼ 11 ppm in volume (ppmv) for CH4 detection, and the MDL can be further reduced to ∼ 1 ppmv with an averaging time of ∼ 35 s. A real-time in-situ monitoring of CH4 leakage reveals that the proposed sensor system can realize a fast response (< 12 s) for field application.en_US
dc.identifier.citationHu, Lien, Zheng, Chuantao, Zhang, Minghui, et al.. "Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy." <i>Photoacoustics,</i> 21, (2021) Elsevier: https://doi.org/10.1016/j.pacs.2020.100230.en_US
dc.identifier.digitalmethane-detectionen_US
dc.identifier.doihttps://doi.org/10.1016/j.pacs.2020.100230en_US
dc.identifier.urihttps://hdl.handle.net/1911/109821en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsThis is an open access article under the CC BY-NC-ND licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.subject.keywordInfrared spectroscopyen_US
dc.subject.keywordAbsorption spectroscopyen_US
dc.subject.keywordLight-induced thermo-elastic spectroscopy (LITES)en_US
dc.subject.keywordMethane detectionen_US
dc.titleLong-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopyen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
methane-detection.pdf
Size:
8.94 MB
Format:
Adobe Portable Document Format