Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics

dc.citation.articleNumber7168en_US
dc.citation.journalTitleNature Communicationsen_US
dc.citation.volumeNumber14en_US
dc.contributor.authorShi, Chuqiaoen_US
dc.contributor.authorMao, Nannanen_US
dc.contributor.authorZhang, Kenaen_US
dc.contributor.authorZhang, Tianyien_US
dc.contributor.authorChiu, Ming-Huien_US
dc.contributor.authorAshen, Kennaen_US
dc.contributor.authorWang, Boen_US
dc.contributor.authorTang, Xiuyuen_US
dc.contributor.authorGuo, Galioen_US
dc.contributor.authorLei, Shimingen_US
dc.contributor.authorChen, Longqingen_US
dc.contributor.authorCao, Yeen_US
dc.contributor.authorQian, Xiaofengen_US
dc.contributor.authorKong, Jingen_US
dc.contributor.authorHan, Yimoen_US
dc.date.accessioned2024-05-03T15:51:18Zen_US
dc.date.available2024-05-03T15:51:18Zen_US
dc.date.issued2023en_US
dc.description.abstractVan der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.en_US
dc.identifier.citationShi, C., Mao, N., Zhang, K., Zhang, T., Chiu, M.-H., Ashen, K., Wang, B., Tang, X., Guo, G., Lei, S., Chen, L., Cao, Y., Qian, X., Kong, J., & Han, Y. (2023). Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics. Nature Communications, 14(1), 7168. https://doi.org/10.1038/s41467-023-42947-3en_US
dc.identifier.digitals41467-023-42947-3en_US
dc.identifier.doihttps://doi.org/10.1038/s41467-023-42947-3en_US
dc.identifier.urihttps://hdl.handle.net/1911/115614en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleDomain-dependent strain and stacking in two-dimensional van der Waals ferroelectricsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-023-42947-3.pdf
Size:
6.65 MB
Format:
Adobe Portable Document Format