Spreading Process Maps for Powder-Bed Additive Manufacturing Derived from Physics Model-Based Machine Learning

dc.citation.articleNumber1176en_US
dc.citation.issueNumber11en_US
dc.citation.journalTitleMetalsen_US
dc.citation.volumeNumber9en_US
dc.contributor.authorDesai, Prathamesh S.en_US
dc.contributor.authorHiggs, C. Fred IIIen_US
dc.date.accessioned2020-02-14T16:39:47Zen_US
dc.date.available2020-02-14T16:39:47Zen_US
dc.date.issued2019en_US
dc.description.abstractThe powder bed additive manufacturing (AM) process is comprised of two repetitive steps—spreading of powder and selective fusing or binding the spread layer. The spreading step consists of a rolling and sliding spreader which imposes a shear flow and normal stress on an AM powder between itself and an additively manufactured substrate. Improper spreading can result in parts with a rough exterior and porous interior. Thus it is necessary to develop predictive capabilities for this spreading step. A rheometry-calibrated model based on the polydispersed discrete element method (DEM) and validated for single layer spreading was applied to study the relationship between spreader speeds and spread layer properties of an industrial grade Ti-6Al-4V powder. The spread layer properties used to quantify spreadability of the AM powder, i.e., the ease with which an AM powder spreads under a set of load conditions, include mass of powder retained in the sampling region after spreading, spread throughput, roughness of the spread layer and porosity of the spread layer. Since the physics-based DEM simulations are computationally expensive, physics model-based machine learning, in the form of a feed forward, back propagation neural network, was employed to interpolate between the highly nonlinear results obtained by running modest numbers of DEM simulations. The minimum accuracy of the trained neural network was 96%. A spreading process map was generated to concisely present the relationship between spreader speeds and spreadability parameters.en_US
dc.identifier.citationDesai, Prathamesh S. and Higgs, C. Fred III. "Spreading Process Maps for Powder-Bed Additive Manufacturing Derived from Physics Model-Based Machine Learning." <i>Metals,</i> 9, no. 11 (2019) MDPI: https://doi.org/10.3390/met9111176.en_US
dc.identifier.digitalmetals-09-01176en_US
dc.identifier.doihttps://doi.org/10.3390/met9111176en_US
dc.identifier.urihttps://hdl.handle.net/1911/108046en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsThis is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citeden_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subject.keywordpowder-bed additive manufacturing (AM)en_US
dc.subject.keywordpowder spreadingen_US
dc.subject.keywordspreading process mapen_US
dc.subject.keyworddiscrete element method (DEM)en_US
dc.subject.keywordmachine learningen_US
dc.titleSpreading Process Maps for Powder-Bed Additive Manufacturing Derived from Physics Model-Based Machine Learningen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
metals-09-01176.pdf
Size:
7.96 MB
Format:
Adobe Portable Document Format