Rapid Calculation of Molecular Kinetics Using Compressed Sensing

Abstract

Recent methods for the analysis of molecular kinetics from massive molecular dynamics (MD) data rely on the solution of very large eigenvalue problems. Here we build upon recent results from the field of compressed sensing and develop the spectral oASIS method, a highly efficient approach to approximate the leading eigenvalues and eigenvectors of large generalized eigenvalue problems without ever having to evaluate the full matrices. The approach is demonstrated to reduce the dimensionality of the problem by 1 or 2 orders of magnitude, directly leading to corresponding savings in the computation and storage of the necessary matrices and a speedup of 2 to 4 orders of magnitude in solving the eigenvalue problem. We demonstrate the method on extensive data sets of protein conformational changes and protein-ligand binding using the variational approach to conformation dynamics (VAC) and time-lagged independent component analysis (TICA). Our approach can also be applied to kernel formulations of VAC, TICA, and extended dynamic mode decomposition (EDMD).

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Litzinger, Florian, Boninsegna, Lorenzo, Wu, Hao, et al.. "Rapid Calculation of Molecular Kinetics Using Compressed Sensing." Journal of Chemical Theory and Computation, 14, no. 5 (2018) American Chemical Society: 2771-2783. https://doi.org/10.1021/acs.jctc.8b00089.

Has part(s)
Forms part of
Rights
This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by the American Chemical Society.
Link to license
Citable link to this page