Charge-transfer-based Gas Sensing Using Atomic-layer MoS2

Abstract

Two-dimensional (2D) molybdenum disulphide (MoS2) atomic layers have a strong potential to be used as 2D electronic sensor components. However, intrinsic synthesis challenges have made this task difficult. In addition, the detection mechanisms for gas molecules are not fully understood. Here, we report a high-performance gas sensor constructed using atomic-layered MoS2ᅠsynthesised by chemical vapour deposition (CVD). A highly sensitive and selective gas sensor based on the CVD-synthesised MoS2was developed.ᅠIn situᅠphotoluminescence characterisation revealed the charge transfer mechanism between the gas molecules and MoS2, which was validated by theoretical calculations. First-principles density functional theory calculations indicated that NO2ᅠand NH3ᅠmolecules have negative adsorption energies (i.e., the adsorption processes are exothermic). Thus, NO2ᅠand NH3ᅠmolecules are likely to adsorb onto the surface of the MoS2. Theᅠin situᅠPL characterisation of the changes in the peaks corresponding to charged trions and neutral excitons via gas adsorption processes was used to elucidate the mechanisms of charge transfer between the MoS2ᅠand the gas molecules.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Cho, Byungjin, Hahm, Myung Gwan, Choi, Minseok, et al.. "Charge-transfer-based Gas Sensing Using Atomic-layer MoS2." Scientific Reports, 5, (2015) Nature Publishing Group: http://dx.doi.org/10.1038/srep08052.

Has part(s)
Forms part of
Rights
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Link to license
Citable link to this page