Quantitative unique continuation for the elasticity system with application to the kinematic inverse rupture problem
dc.citation.firstpage | 286 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.journalTitle | Communications in Partial Differential Equations | en_US |
dc.citation.lastpage | 314 | en_US |
dc.citation.volumeNumber | 48 | en_US |
dc.contributor.author | de Hoop, Maarten V. | en_US |
dc.contributor.author | Lassas, Matti | en_US |
dc.contributor.author | Lu, Jinpeng | en_US |
dc.contributor.author | Oksanen, Lauri | en_US |
dc.date.accessioned | 2023-04-25T14:47:55Z | en_US |
dc.date.available | 2023-04-25T14:47:55Z | en_US |
dc.date.issued | 2023 | en_US |
dc.description.abstract | We obtain explicit estimates on the stability of the unique continuation for a linear system of hyperbolic equations. In particular, our result applies to the elasticity system and also the Maxwell system. As an application, we study the kinematic inverse rupture problem of determining the jump in displacement and the friction force at the rupture surface, and we obtain new features on the stable unique continuation up to the rupture surface. | en_US |
dc.identifier.citation | de Hoop, Maarten V., Lassas, Matti, Lu, Jinpeng, et al.. "Quantitative unique continuation for the elasticity system with application to the kinematic inverse rupture problem." <i>Communications in Partial Differential Equations,</i> 48, no. 2 (2023) Taylor & Francis: 286-314. https://doi.org/10.1080/03605302.2023.2175215. | en_US |
dc.identifier.digital | Quantitative-unique-continuation | en_US |
dc.identifier.doi | https://doi.org/10.1080/03605302.2023.2175215 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/114827 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.rights | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/), | en_US |
dc.title | Quantitative unique continuation for the elasticity system with application to the kinematic inverse rupture problem | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | publisher version | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Quantitative-unique-continuation.pdf
- Size:
- 2.32 MB
- Format:
- Adobe Portable Document Format