Adaptive coding across visual features during free-viewing and fixation conditions
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Theoretical studies have long proposed that adaptation allows the brain to effectively use the limited response range of sensory neurons to encode widely varying natural inputs. However, despite this influential view, experimental studies have exclusively focused on how the neural code adapts to a range of stimuli lying along a single feature axis, such as orientation or contrast. Here, we performed electrical recordings in macaque visual cortex (area V4) to reveal significant adaptive changes in the neural code of single cells and populations across multiple feature axes. Both during free viewing and passive fixation, populations of cells improved their ability to encode image features after rapid exposure to stimuli lying on orthogonal feature axes even in the absence of initial tuning to these stimuli. These results reveal a remarkable adaptive capacity of visual cortical populations to improve network computations relevant for natural viewing despite the modularity of the functional cortical architecture.
Description
Advisor
Degree
Type
Keywords
Citation
Nigam, Sunny, Milton, Russell, Pojoga, Sorin, et al.. "Adaptive coding across visual features during free-viewing and fixation conditions." Nature Communications, 14, (2023) Springer Nature: https://doi.org/10.1038/s41467-022-35656-w.