A deep learning solution for crystallographic structure determination

dc.citation.firstpage487en_US
dc.citation.issueNumber4en_US
dc.citation.journalTitleIUCrJen_US
dc.citation.lastpage496en_US
dc.citation.volumeNumber10en_US
dc.contributor.authorPan, T.en_US
dc.contributor.authorJin, S.en_US
dc.contributor.authorMiller, M. D.en_US
dc.contributor.authorKyrillidis, A.en_US
dc.contributor.authorPhillips, G. N.en_US
dc.date.accessioned2023-08-01T17:29:49Zen_US
dc.date.available2023-08-01T17:29:49Zen_US
dc.date.issued2023en_US
dc.description.abstractThe general de novo solution of the crystallographic phase problem is difficult and only possible under certain conditions. This paper develops an initial pathway to a deep learning neural network approach for the phase problem in protein crystallography, based on a synthetic dataset of small fragments derived from a large well curated subset of solved structures in the Protein Data Bank (PDB). In particular, electron-density estimates of simple artificial systems are produced directly from corresponding Patterson maps using a convolutional neural network architecture as a proof of concept.en_US
dc.identifier.citationPan, T., Jin, S., Miller, M. D., et al.. "A deep learning solution for crystallographic structure determination." <i>IUCrJ,</i> 10, no. 4 (2023) International Union of Crystallography: 487-496. https://doi.org/10.1107/S2052252523004293.en_US
dc.identifier.digitalmf5063en_US
dc.identifier.doihttps://doi.org/10.1107/S2052252523004293en_US
dc.identifier.urihttps://hdl.handle.net/1911/115045en_US
dc.language.isoengen_US
dc.publisherInternational Union of Crystallographyen_US
dc.rightsExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license.  Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleA deep learning solution for crystallographic structure determinationen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpublisher versionen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mf5063.pdf
Size:
744.54 KB
Format:
Adobe Portable Document Format