Semiparametric count data regression for self-reported mental health

dc.citation.firstpage1520en_US
dc.citation.issueNumber2en_US
dc.citation.journalTitleBiometricsen_US
dc.citation.lastpage1533en_US
dc.citation.volumeNumber79en_US
dc.contributor.authorKowal, Daniel R.en_US
dc.contributor.authorWu, Bohanen_US
dc.date.accessioned2023-07-18T16:29:40Zen_US
dc.date.available2023-07-18T16:29:40Zen_US
dc.date.issued2023en_US
dc.description.abstract‘‘For how many days during the past 30 days was your mental health not good?” The responses to this question measure self-reported mental health and can be linked to important covariates in the National Health and Nutrition Examination Survey (NHANES). However, these count variables present major distributional challenges: The data are overdispersed, zero-inflated, bounded by 30, and heaped in 5- and 7-day increments. To address these challenges—which are especially common for health questionnaire data—we design a semiparametric estimation and inference framework for count data regression. The data-generating process is defined by simultaneously transforming and rounding (star) a latent Gaussian regression model. The transformation is estimated nonparametrically and the rounding operator ensures the correct support for the discrete and bounded data. Maximum likelihood estimators are computed using an expectation-maximization (EM) algorithm that is compatible with any continuous data model estimable by least squares. star regression includes asymptotic hypothesis testing and confidence intervals, variable selection via information criteria, and customized diagnostics. Simulation studies validate the utility of this framework. Using star regression, we identify key factors associated with self-reported mental health and demonstrate substantial improvements in goodness-of-fit compared to existing count data regression models.en_US
dc.identifier.citationKowal, Daniel R. and Wu, Bohan. "Semiparametric count data regression for self-reported mental health." <i>Biometrics,</i> 79, no. 2 (2023) Wiley: 1520-1533. https://doi.org/10.1111/biom.13617.en_US
dc.identifier.doihttps://doi.org/10.1111/biom.13617en_US
dc.identifier.urihttps://hdl.handle.net/1911/114936en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsThis work is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the work beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.titleSemiparametric count data regression for self-reported mental healthen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
f_star_v6.pdf
Size:
6.16 MB
Format:
Adobe Portable Document Format
Description: