Projection Pursuit via Multivariate Histograms

dc.contributor.authorTerrell, George R.en_US
dc.date.accessioned2018-06-18T17:24:31Zen_US
dc.date.available2018-06-18T17:24:31Zen_US
dc.date.issued1985-08en_US
dc.date.noteAugust 1985en_US
dc.description.abstractThe problem of finding the most interesting low-dimensional subspaces of a multidimensional data set has usually been formulated as a search for the maximum over all projection subspaces of a measure of information. Alternatively, interesting subspaces may be characterized as the eigenspaces associated to the largest eigenvalues of a tensor-valued information measure on the whole space. Since this same information measure solves the problem of the asymptotically optimal multivariate histogram, the issues of selection and representation are resolved simultaneously. This leads to substantial simplification of both the computational and conceptual problems in projection pursuit.en_US
dc.format.extent22 ppen_US
dc.identifier.citationTerrell, George R.. "Projection Pursuit via Multivariate Histograms." (1985) <a href="https://hdl.handle.net/1911/101584">https://hdl.handle.net/1911/101584</a>.en_US
dc.identifier.digitalTR85-07en_US
dc.identifier.urihttps://hdl.handle.net/1911/101584en_US
dc.language.isoengen_US
dc.titleProjection Pursuit via Multivariate Histogramsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR85-07.pdf
Size:
233.78 KB
Format:
Adobe Portable Document Format