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Abstract

The problem of finding the most interesting low-dimensional subspaces of a multidimen-
sional data set has usually been formulated as a search for the maximum over all projection sub-
spaces of a measure of information. Alternatively, interesting subspaces may be characterized as
the eigenspaces associated to the largest eigenvalues of a tensor-valued information measure on
the whole space. Since this same information measure solves the problem of the asymptotically
optimal mutivariate histogram, the issues of selection and representation are resolved simultane-
ously. This leads to substantial simplification of both the computational and conceptual problems

in projection pursuit.
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1. Introduction

Statisticians find themselves very often to be taking several measurements simultaneously
on each of a number of experimental subjects. An extreme example of this is of course the U. S.
census, in which a large number of demographic facts are collected about each of 240,000,000 peo-
ple. Now if it is reasonable to think of several of these measurements as falling on a continuous
real scale, then we are immediately tempted to think of them as coordinates in R*. This idea goes
back at least to Karl Pearson(1901). The tools of affine geometry are then available to study the

collection of points that represent the observations.

We find ourselves with two interrelated difficulties with the geometrical interpretation of
data. First, analytic geometry assumes homogeneity of the units of measurement in each of the
coordinates; this is only fortuitously the case for multivariate statistical data. Two of the coordi-
nates may be (literally) apples and oranges, as in the annual consumption of various fruits by
American households. Similarly, if we are to take geometry seriously, there is no mathematical
reason to prefer one system of axes to another. Alternative axes may be quite interpretable in the
problem under consideration; apples + 3 X oranges might be an interesting index of the contri-
bution of fruits consumed to household nutrition. We may describe the problem mathematically
as the requirement to choose the best affine change of variables y — ATx + b where A is a
matrix, x is the old measurements vector, y is the new measurements vector, and b is the new

coordinate vector for the origin in the old space.

The second problem is that the statistician may have geometrized the problem in part in
order to "see” the problem graphically, in the form of either a scatterplot or a nonparametric den-
sity estimate (which may be thought of as a smoothed scatterplot). But these graphics that invoke
the ordinary human spatial sense are inherently limited to three dimensions; and except by the
use of illusion or changes over time are limited by current graphical technology to two dimen-
sions. Students of graphics are currently experimenting with tricks to overcome this problem; all
of them seem quite limited and quickly overburden the human spatial sense as the dimensionality

increases. Thus, higher dimensional data challenges the statistician to find low dimensional sub-



spaces of his data space that are of particular interest, especially when represented graphically. It
is easy to see that attempts to somehow exhaust possible subspaces are doomed by the combina-
torial explosion as the dimension of the original representation rises to quite modest levels. In
mathematical notation, we wish to choose a small number of matrices A as in the previous para-
graph which may be decomposed A = A;|Ag| - |As|Ars where A;, ¢=1,.. .k have at
most three columns. These low dimensional coordinate systems are intended to pick out several

of the points of view from which our data set is most interesting and interpretable.

This problem is not well-posed unless we are able to provide a mathematical characteriza-
tion of interesting subspaces. Spearman(1904) proposed that we seek a low dimensional subspace
that contained the covariances of the variables, so that the residuals x - AATx have a diagonal
covariance structure. Thus, factor analysis declares that a subspace is interesting if several of
our measurements are substantially correlated with it. The obvious objection to this democratic
criterion is that it is influenced unduly by the choice of measurements to be included in the space.
If x and y are two independent measurements, then the arbitrary inclusion of the quantity x +y
as a third variable creates an artificial new factor. Hotelling(1933) suggested that a distinguished
coordinate system should consist of the eigenvectors of the covariance matrix of the data set; this
is principal components analysis. From our point of view, the most interesting subspace would
usually be that generated by the eigenvectors associated to the largest eigenvalue. This criterion is
unduly influenced by the arbitrary choice of units in any one of our possibly heterogeneous meas-
urements. A change from meters to centimeters in one axis would almost certainly make this a
dominant direction by inflating the variance. A standard device for dealing with this problem is
to prescale each axis in the same way, say to a variance of one. The effect of this is to emphasize
large correlations; and thus to give results similar to factor analysis, with similar difficulties.
Thus, these classical methods give very special definitions of important subspaces, which are

rather limited in light of the problems we encounter in practice.

Kruskal(1969) suggested that a natural criterion for an interesting subspace was the degree
to which the data as seen in that subspace fell readily into more than one cluster. Friedman and

Tukey(1974) implemented this approach and called the method projection pursuit. Huber(1985)



pointed out that they were maximizing an estimate of the quantity f f(z)%dz where f is the pro-
bability density of the data points; he suggested that this was only one possibility for measuring
the information content of the data as seen from a projection subspace. Huber proposed that
more classical measures such as Shannon information [f(z)log f(z)dx might be of interest
because of certain formal properties they possess. For example, Shannon information attains its
minimum over all probability laws with a given covariance matrix at the Gaussian distribution;
thus, maximum Shannon information is a criterion that measures nonnormality. Projection pur-
suit indeed seems to capture a more appealing idea of interest in subspaces than older methods.
Marginal densities with high information content show radical asymmetries and multiple modes,
which may lead analysts to productive hypotheses about the data set. Nonetheless there are at
least two important limitations to these methods. For one thing, their criteria, the measures of
information, are somewhat ad hoc. A number have been suggested, and though they behave simi-
larly in some ways (though not in others: see Jee(1985)), there is no clear way to choose among
them. For another, projection pursuit methods tend to require large amounts of computer time;
information criteria tend to be quite complex functions of the choice of subspace (Jee, 1985).

Thus, we would like a clearer justification for a particular criterion, and a more computationally

tractable method for optimizing it.

This paper will argue that the problems of choosing interesting subspaces of a multivariate
data set and of graphical representation of the data are inherently intertwined. For large data
sets, particularly in more than two dimensions, the scatterplot is not a very satisfactory data
representation. There are problems of masking and of simple overload of one’s capacity to inter-
pret so many dots. The usual solution is to use a nonparametric density estimate, which uses
smoothing to pick out qualitative features from the sample. The oldest and conceptually simplest
nonparametric density estimator is the histogram. Scott(1985) has pointed out that the internal
representation of a multivariate histogram, an array of counts, is a particularly tractable form for
manipulation of large data sets; and very little information need be lost in the reduction to that
form. We will seek an optimal choice of rectangular bin dimensions and grid orientation for a

multivariate histogram representation of our data set, by generalizing the approach used in



Scott(1979) for univariate histograms. It will be optimal in the sense that asymptotically the
integrated mean squared error f E(f - f )%, where f is the true density underlying our data and f
is a histogram estimate, is to be made least. We will conclude here that the optimal grid orienta-

tion for the multivariate histogram is parallel to the principal axes of the quadratic form

of of
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}; and the optimal bin dimensions are determined by its eigenvalues. This form is a

tensor; that is, it transforms in the standard way under changes of variables. It is a natural choice
of information measure, somewhat similar in form to the classical Fisher information matrix for
multivariate location; we will investigate the conjecture that the subspaces of greatest interest
tend to be generated by the eigenvectors corresponding to the largest eigenvalues of the quadratic
form, under a suitable preliminary scaling of the data set. Thus, we are identifying the interest in
a subspace with the complexity in that direction of the optimal multivariate histogram. Since this
matrix is readily estimated from a preliminary histogram of the data, the search for interesting
subspaces by this method is very easy computationally. Finally, graphical representation of the
subspaces chosen is very readily accomplished from the optimal histogram constructed in the

course of the analysis.



2. Multivariate Histograms

A regular rectangular histogram may be constructed by the following device: let
C4 = [-1/2,1/2)X - - - X[-1/2,1/2) be the unit cube in R centered at the origin. Then every
point of R¢ falls in a unique subset of the form & + C¢ where 8 ¢ Z%; we will call this the stan-
dard bin decomposition of R¢. See Figure 1. If A is a nonsingular square matrix, then an affine
bin decomposition of R? is the set of subsets of the form {Ax + o | x € C? + }, where o is
called the bin origin. See Figure 2. It turns out that the influence of the choice of bin origin is
negligible; and so we will let it be the zero vector in what follows. v, is then the number of ele-
ments of a random sample of size n that fall in the bin indexed by z. Then a histogram density

estimate is given by

. v,
T0) = Traer 4]

where y falls in the bin indexed by z.

We wish to choose the matrix A in such a way that asymptotically for n large the
integrated mean squared error f E( f —f)? is least. This error may be decomposed into the integral
of the variance and the integral of the squared bias. Without loss of generality we may concen-
trate on the bin centered at the origin. Assume that the density may be expanded in a Taylor’s
series about the origin f(x) = f(0) + xTf (0) + o(} |x ] |?). The count for that bin is then
approximately a Poisson variate with expectation n |det A | f(0). The variance of f in that bin
is then f(0)/(n |det A |) to first order; and thus the integrated variance is 1/(n | det A |) to that

order. The bias at a point y to first order is 7 (0)Ty ; thus to that order the average bias squared

over that bin is

T;Terf(O)TnyVf (0)dy.
bin

Let us make a change of variables y = Ax; the previous expression becomes

1

-—Imrfvf(O)TAxxTAva (0)dx |det A |

c¢

=v/f(0)TA [xxTdx AT (0).
Cd



But f xx T over the unit cube is just one-twelfth the identity matrix, so we get

— v/ (OFAAT VI (0).

We conclude that the integrated squared bias of the histogram density estimate is to first order
1
VI3 AATVS(y) dy
Rd

= -l}é-ftr(vf(y)TAATVf(Y)) dy
Rd

and using the trace identity tr(AB) = tr(BA)
1
== [tr(ATVf(y)VI(y)TA) dy
i),

1
= —=tr(AT [vf(y)vi(y)" dy A).
12 i
As an aside, to simplify our notation let us

Def: For a multivariate density f(y ) let the histogram information matrix, denoted I,

be the matrix

L = [viy)vf(y)dy.
R

Lemma: When it exists, the histogram information matrix is symmetric, positive definite,
and a two-index tensor; that is, given an orthonormal change of variabless x = Oy,

Lix) = Ol;4)0T.

Proof: Symmetry is obvious. To see that I, is positive definite, note that it is the integral
over R¢ of the nonnegative-matrix-valued function 7 f7f T and so is surely nonnegative definite.
But if it had a nontrivial null space, the gradient would have to be zero in that direction for
almost all y; this is impossible because the density must be positive on a set of positive measure
and go to zero along all rays leading out of that set. Thus, the matrix is positive definite. To see
that it has tensor character, note that f is a tensor invariant because the Jacobean of an ortho-
normal change of variables is one. Thus, the matrix of second partials of f is a two-index tensor;

further, so is the expectation with respect to f of this matrix. But by integration by parts,

I = -B(6°f [0y:9y;).



Q.E.D.
Now we are ready to find the asymptotically optimal bin structure. We wish to minimize

1 1
IMSE = ———— + —tr(ATIL A
n|dctA‘+12r( 14)
by appropriate choice of A. We will find it convenient to reparametrize by letting h¢ = |det A |
so that h is the edge of a hypercube with the same volume as a bin; and A = AU where U has

determinant one. Thus

IMSE =

1 1
2 R 2 (UTL, U
7 T (UL U)

Let us for the moment hold A constant and attempt to minimize the second term with respect to
U. The determinant of the matrix of which we are taking the trace is fixed and equal to det I,.
By the convexity of the logarithm, this trace achieves a minimum when the eigenvalues of the

matrix with fixed determinant are all equal; that is, when U TI, U is a multiple of the identity.

There are a multiplicity of solutions U, an issue to which we will return; for the moment we sim-

1
ply notice that the trace we want is d(det I;)¢. Our remaining problem is to minimize

1
nh¢

with respect to h. Differentiating and setting the result equal to 0 we get

L
d

dh?
IMSE = + 5 (det 1)

1
b b

1
n(det I;)¢
We conclude
Theorem: An asymptotically optimal histogram density estimate is given by any affine grid

formed by multiplying the standard grid on R¢ by a matrix A such that

2 1
* AAT — (9_)4+2(‘16t I!)d+2 Ij_l.
n

This gives

—d 1 -2
IMSE®* = (14+-5)6 ¥ (det 1) ¥ n ¥+7,



Let us now consider the various solutions A for our optimal histogram. They all give bins of
the same volume det A = h¢ and of the same second central moments, by definition. Geometri-
cally, the choice of bins may be thought of as including a variety of shapes of parallelograms sub-
ject to the constraints mentioned above. Algebraically, do an eigendecomposition of the right
hand side above to get AAT = OTDO where O is an orthonormal matrix and D is a diagonal
matrix with positive elements. Then the general solution is A = OTD'/2P where P is any d Xd
orthonormal matrix. One very important distinguished special solution is of course the case
where the bins are rectangles; this is the usual idea of a multivariate histogram and turns out to
have some useful features for the purposes of this paper. A multivariate rectangle is characterized
by having mutually perpendicular edges; that is equivalent to AT A being a diagonal matrix.

Since OOT is the identity, our solution is A, = OTDI/Q; that is, P is the identity. See Figure

3.

I find it interesting that there is one other natural choice of distinguished solution to this
problem; as you may remember from high school geometry, a rhombus is a parallelogram with
equal sides. In general, this would correspond to a choice of A all of whose columns were of the

same Euclidean length; equivalently, such that the diagonal elements of AT A are all equal. We

have

Prop: There exists a unique A,;,,, Which generates the bin structure for an optimal histo-
gram and for which all bin edges are of equal length if I; has distinct eigenvalues. If this last con-

dition fails, there are multiple rhombic solutions.

The optimal rhomboid histogram may be of interest because its bins exhibit great symmetry
and may lead to more aesthetically pleasing statistical graphics. See Figure 4. The concept

deserves further study.



Fig.! A Standard grid in R® - Fig. 2 An Affine grid in R2

Fig. 3 A Rectangular grid in R Fig. 4 A Rhomboidal grid in R2
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3. Information Components Analysis

We have suggested that constructing an approximately optimal multivariate histogram may
be an aid to choosing low dimensional representations of that data set that are of particular
interest. Two questions remain unanswered: how may we construct such a histogram, and pre-
cisely how does it direct us to interesting subspaces? The first question may be answered by
obtaining an estimate of the histogram information matrix; for that we need a density estimate. It
seems reasonable to construct a preliminary histogram; perhaps a maximally smoothed one in the
sense of Terrell(1980). A histogram is not differentiable, but the bin counts may plausibly be used
to form finite difference estimates of the partial derivatives of the density. It is not difficult to
prove

-1
Theorem: If the bin widths of a histogram are of order n ?*2, then

1 . 2
hJ?n2h1 — hd b%(llnl,...,.j-'.l,...,:d V.I,...,ld) ’ljznhl...hd
is an asymptotically unbiased estimate of | (%-)2 = (I;);;; and
]
1 1
_—_—h,-h,,n2h1...hd b%;,(l/.'l ceedy Vi, L ,i]-l,...,-'d)(V.'l,...,.'d - Vil,...,i,,-1,...,.'d) - ——_h,-hk by by

is an asymptotically unbiased estimate of f(%—)(;)Tf) = (I ).
3 k

I;, which measures the quality of histogram density estimates, like the other measures of
information studies by Huber(1985), measures the bumpiness of the underlying density estimate;
since we are particularly interested in especially bumpy densities, it is naturally intertwined with
the search for worthwhile graphical representations of the data. Like those measures studied by
Huber, it is dependent on the scaling of the original data. If the axes are multiplied by 7, . . ., 74
respectively, then (I;); , is divided by ;7,7 - - - 7,. Since we are more interested in the shape of
the density than in scale-dependent features, we shall correct for the original scaling in the course
of our analysis. Huber(1985) suggests modification of the information measure; we choose the
alternative, equivalent, approach of initially transforming the data to a standard scale. The eigen-

vectors corresponding to the largest eigenvalues of I; then indicate the most interesting directions



11

present in our data. Note a fundamental difference here between study of I; and projection pur-
suit; the latter measures the information content of a low dimensional projection, that is, margi-
nal information. By contrast, I; measures the average bumpiness of conditional densities in each
direction; that is, conditional information. Thus in the study of histogram information matrix,
which we shall call information components analysis, the conditional densities along slices in

the principal directions are of as much interest as projections onto that axis.

We propose the following data analysis procedure: in the original multivariate data set, esti-
mate the covariance matrix X. Do a principal components analysis (an eigen-decomposition) of
this matrix. At this point, we may choose to discard the subspace corresponding to the smallest
eigenvalues if the data set seems flat enough in those directions to make them of little interest.
Now rescale the data set by multiplication by £%/2 so that the covariance matrix is the identity.
Construct a multivariate histogram by a straightforward generalization of the maximal smoothing

principle described in Terrell(1980); we have

Theorem: The d-dimensional density with unit covariance matrix for which the asymptoti-

cally optimal histogram has largest bins is

_d/21“ d+6)/2)
21'rd/2

f(x)=(d+6) (1xTx /(d+6))? on xTx <d+6
where the density is zero outside the indicated sphere. Thus the optimal histogram bin for any

density with unit covariance matrix has each bin edge

i/

Choosing bin edges to have this maximum size is not only a conservative procedure, it is nearly
optimal for the least interesting directions because they have minimum information. Compare
Diaconis and Freedman(1982). Now use the histogram to estimate /; using the Theorem of this
section. An eigendecomposition of I; now allows us to use the Theorem of the previous chapter
and formula (*) to construct a second, nearly optimal, histogram aligned along the principal axes
of I;. We are now prepared to study the most interesting subspaces of the data set; projections

onto the eigenvectors associated to the largest eigenvalues, and conditional slices in those direc-

tions. Notice that all the computations required by this procedure are very easy; all
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representations may be constructed by following columns of histogram bins perpendicular to the

principal directions.

Thus, we have here proposed a method of exploring many-variable data sets that is as plau-
sible as projection pursuit, somewhat more conceptually coherent, and enormously easier compu-

tationally.
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4. Some Examples

A pseudorandom sample of size n=3200 was drawn from a distribution in which 1100
observations came from a trivariate normal distribution with mean (-3.0,1.5,1.5)7 and unit
covariance matrix, 1100 came from one with mean (1.5,-3.0,1.5)7 and unit covariance matrix, and
1000 came from one with mean (1.5,1.5,—3.0)T and unit covariance matrix. The observations were
generated using IMSL routine GGNML. This distribution has well-separated modes which any
reasonable density estimate should distinguish easily. The means lie in the plane z+y+2z=0. This
should clearly be the interesting subspace that we would hope would be found by projection pur-

suit and its relatives.

Our algorithm estimates the covariance matrix of the sample, then transforms it linearly so
that its mean is zero and its covariance matrix is the identity. A histogram with cubical bins of
edge h=.75 (as required by the maximal smoothing principle) is then constructed, and used to
estimate I; by use of the finite difference formula of the last section. IMSL routine EIGRS is then
used to extract the eigenvalues and eigenvectors. I illustrate the results when this procedure was
applied with seed 111111111.0d0. The eigenvectors have been reexpressed in terms of the original

coordinate system:

.0178 (.462,.766,.536)7
0560 (1.875,.178,—2.040)T

1014 (~1.254,2.245,-1.110)7

Note that the smallest eigenvalue is much smaller than the other two, and the eigenvectors associ-
ated to the two larger eigenvalues both lie close to the plane z+y+2z==0. A projection into the
plane of these two more interesting directions of the estimated optimal histogram is shown in Fig-
ure 5; the three clusters stand out very clearly. A number of replications of this experiment with
different seeds leads to closely similar results. It is worth noting, and seems to be usually true for
samples drawn from this distribution, that the three modes are separated along the second most

informative axis; compare Jee(1985).



| | Pz v = s T

Fig. § Best 2-dimensional histogram of a trivariate, trimodal sample (n=3200)
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As a second experiment, 3200 pseudorandom points were generated on the circle
(4c080,4v/2/28in0,-41/2/28in )T (using the IMSL routine GGUBS), and a trivariate normal ran-
dom vector with unit covariance matrix was added to each. The algorithm was applied to this
smoke-ring distribution; with the same seed as in ther example above the eigenvalues and associ-

ated eigenvectors were

.0105 (-.348,.796,.620)7
0214 (1.175,1.956,-1.928)7

0328 (-2.717,.746,-.943)7

The two eigenvectors associated to the larger eigenvalues lie close to the plane of the smoke-ring.

The histogram projected onto this plane (Figure 6) shows the shape clearly.

Further theory and experiment are needed to discover what sample sizes are required to pin

down structures of various degrees of subtlety.
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Fig. 6 Best 2-dimensional histogram f trivariate 'smoke ring" sample (n=3200)
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