Random Hamiltonians with arbitrary point interactions in one dimension
dc.citation.firstpage | 104 | en_US |
dc.citation.journalTitle | Journal of Differential Equations | en_US |
dc.citation.lastpage | 126 | en_US |
dc.citation.volumeNumber | 282 | en_US |
dc.contributor.author | Damanik, David | en_US |
dc.contributor.author | Fillman, Jake | en_US |
dc.contributor.author | Helman, Mark | en_US |
dc.contributor.author | Kesten, Jacob | en_US |
dc.contributor.author | Sukhtaiev, Selim | en_US |
dc.date.accessioned | 2021-03-12T22:10:35Z | en_US |
dc.date.available | 2021-03-12T22:10:35Z | en_US |
dc.date.issued | 2021 | en_US |
dc.description.abstract | We consider disordered Hamiltonians given by the Laplace operator subject to arbitrary random self-adjoint singular perturbations supported on random discrete subsets of the real line. Under minimal assumptions on the type of disorder, we prove the following dichotomy: Either every realization of the random operator has purely absolutely continuous spectrum or spectral and exponential dynamical localization hold. In particular, we establish Anderson localization for Schrödinger operators with Bernoulli-type random singular potential and singular density. | en_US |
dc.identifier.citation | Damanik, David, Fillman, Jake, Helman, Mark, et al.. "Random Hamiltonians with arbitrary point interactions in one dimension." <i>Journal of Differential Equations,</i> 282, (2021) Elsevier: 104-126. https://doi.org/10.1016/j.jde.2021.01.044. | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.jde.2021.01.044 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/110177 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier. | en_US |
dc.title | Random Hamiltonians with arbitrary point interactions in one dimension | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
dc.type.publication | post-print | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1907-09530.pdf
- Size:
- 241.24 KB
- Format:
- Adobe Portable Document Format
- Description: