Random Hamiltonians with arbitrary point interactions in one dimension

dc.citation.firstpage104en_US
dc.citation.journalTitleJournal of Differential Equationsen_US
dc.citation.lastpage126en_US
dc.citation.volumeNumber282en_US
dc.contributor.authorDamanik, Daviden_US
dc.contributor.authorFillman, Jakeen_US
dc.contributor.authorHelman, Marken_US
dc.contributor.authorKesten, Jacoben_US
dc.contributor.authorSukhtaiev, Selimen_US
dc.date.accessioned2021-03-12T22:10:35Zen_US
dc.date.available2021-03-12T22:10:35Zen_US
dc.date.issued2021en_US
dc.description.abstractWe consider disordered Hamiltonians given by the Laplace operator subject to arbitrary random self-adjoint singular perturbations supported on random discrete subsets of the real line. Under minimal assumptions on the type of disorder, we prove the following dichotomy: Either every realization of the random operator has purely absolutely continuous spectrum or spectral and exponential dynamical localization hold. In particular, we establish Anderson localization for Schrödinger operators with Bernoulli-type random singular potential and singular density.en_US
dc.identifier.citationDamanik, David, Fillman, Jake, Helman, Mark, et al.. "Random Hamiltonians with arbitrary point interactions in one dimension." <i>Journal of Differential Equations,</i> 282, (2021) Elsevier: 104-126. https://doi.org/10.1016/j.jde.2021.01.044.en_US
dc.identifier.doihttps://doi.org/10.1016/j.jde.2021.01.044en_US
dc.identifier.urihttps://hdl.handle.net/1911/110177en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier.en_US
dc.titleRandom Hamiltonians with arbitrary point interactions in one dimensionen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpost-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1907-09530.pdf
Size:
241.24 KB
Format:
Adobe Portable Document Format
Description: