Material parameter estimation and imaging with terahertz time-domain spectroscopy
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Terahertz time-domain spectroscopy (THz-TDS) offers a range of unique imaging modalities due to the broad bandwidth, sub-picosecond duration, and phase-sensitive detection of the THz pulses. Previous research in the THz field primarily focused on improving the optoelectronics and on qualitative investigation of suitable applications. In this thesis, we use a quantitative approach to explore and extend the boundaries of the system. First, the possibility exists to combine spectroscopic characterization and/or identification with imaging because the THz radiation is broadband in nature. We describe a robust algorithm for extracting the optical constants and thickness, simultaneously and independently, from a sample. The technique extracts material parameters for both high and low index materials. Second, a fiber-coupled THz system provides an unparalleled opportunity to simulate seismic data collection. We demonstrate the homology between ultra-wideband seismic and THz imaging using multistatic reflective data acquisition. These results broaden the capabilities of THz imaging by borrowing from a mature imaging community. We investigate the resolution limits and show results from both simple and complex layered targets.
Description
Advisor
Degree
Type
Keywords
Citation
Dorney, Timothy Dominic. "Material parameter estimation and imaging with terahertz time-domain spectroscopy." (2002) Diss., Rice University. https://hdl.handle.net/1911/18074.