The Embedded Triangles Algorithm for Distributed Estimation in Sensor Networks
dc.citation.bibtexName | inproceedings | en_US |
dc.citation.conferenceName | IEEE Workshop on Statistical Signal Processing (SSP) | en_US |
dc.citation.location | St. Louis, MO | en_US |
dc.contributor.author | Delouille, Veronique | en_US |
dc.contributor.author | Neelamani, Ramesh | en_US |
dc.contributor.author | Chandrasekaran, Venkat | en_US |
dc.contributor.author | Baraniuk, Richard G. | en_US |
dc.contributor.org | Digital Signal Processing (http://dsp.rice.edu/) | en_US |
dc.date.accessioned | 2007-10-31T00:42:35Z | en_US |
dc.date.available | 2007-10-31T00:42:35Z | en_US |
dc.date.issued | 2003-09-01 | en_US |
dc.date.modified | 2006-06-21 | en_US |
dc.date.note | 2004-02-10 | en_US |
dc.date.submitted | 2003-09-01 | en_US |
dc.description | Conference Paper | en_US |
dc.description.abstract | We propose a new iterative distributed estimation algorithm for Gaussian hidden Markov graphical models with loops. We decompose a loopy graph into a number of linked <i>embedded triangles</i> and then apply a parallel block-Jacobi iteration comprising local linear minimum mean-square-error estimation on each triangle (involving a simple 3 × 3 matrix inverse computation) followed by an information exchange between neighboring nodes and triangles. A simulation study demonstrates that the algorithm converges extremely rapidly, outperforming a number of existing algorithms. Embedded triangles are simple, local, scalable, fault-tolerant, and energy-efficient, and thus ideally suited for wireless sensor networks. | en_US |
dc.identifier.citation | V. Delouille, R. Neelamani, V. Chandrasekaran and R. G. Baraniuk, "The Embedded Triangles Algorithm for Distributed Estimation in Sensor Networks," 2003. | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/19854 | en_US |
dc.language.iso | eng | en_US |
dc.subject | Hidden Markov Models | en_US |
dc.subject | distributed estimation | en_US |
dc.subject | block Jacobi | en_US |
dc.subject | graphical models | en_US |
dc.subject.keyword | Hidden Markov Models | en_US |
dc.subject.keyword | distributed estimation | en_US |
dc.subject.keyword | block Jacobi | en_US |
dc.subject.keyword | graphical models | en_US |
dc.subject.other | Signal Processing Applications | en_US |
dc.title | The Embedded Triangles Algorithm for Distributed Estimation in Sensor Networks | en_US |
dc.type | Conference paper | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Del2003Sep5TheEmbedde.PDF
- Size:
- 318.42 KB
- Format:
- Adobe Portable Document Format